Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Securing Linux

Hyungjoon Koo and Anke Li



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Outline

* Overview
— Background: necessity & brief history
— Core concepts

e LSM (Linux Security Module)
— Requirements
— Design

 SELinux

— Key elements
— Security context: identity (SID), role, type/domain

* AppArmor
— Key elements
— Application policy profile

* SELinux vs AppArmor



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Why a new access control model

e Limited traditional access control for Linux

— Discretionary Access Control (DAC)
* Provide only a coarse access control
* 9 bits model (rwx per owner, group and others)
* Has setuid, setgid and sticky bit - not enough

* Cases when a fine-grained access control needs
— Does passwd require root access to printers?

— Suppose | have a secret diary and the app to read it
* Can | restrict my app from reading/writing a socket over network?

— Alice might have multiple roles
» Surfing the web, writing a report, and managing a firewall



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Brief history

* Increasing the demand for reference monitor in Linux

— A mechanism to enforce access control
— Originate from orange book from the NSA: too generic

* Adopting LSM in Linux Kernel
— Originally a set of kernel modules in 2.2, updated in 2.4

— LSM (Linux Security Module) Feature in 2.6
e SELinux developed by the NSA and released in 2001
» Default choice for Fedora/RedHat Linux

* Lots of early works
— Subdomain (AppArmor), Flask (SELinux), OpenWall, ...



Fall 2014:: CSE 506:: Section 2 (PhD)

q\\\‘ Stony Brook University

Reference monitor

* A component that authorizes access requests at the RM/ defined by
individual hooks which invokes module to submit a query to the policy store

Process

Process

Process

lsyslem call lsystem call lsvstem call
i ~ Cd

Process

l system call

/" Operating System \,‘;

-

Reference Monitor

Authorization Module

Policy Store

Protection
State

Labeling Transition
State State

From Operating System Security (Fig 2.3)



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Core concepts

* |dea: Define policies to decide if applications/users
have the privilege to proceed a given operation

— MAC: Mandatory access control
— Least Privileges

* Broadly covered security policy
— To all subjects, all objects and all operations

— As everything in Linux is represented as a FILE
* files, directories, devices, sockets, ports, pipes, and IPCs



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Linux Security Module (LSM)

* Implementation of a reference monitor

* Requirements
— Modularized security
— Loadable modules
— Centralized MAC
— LSM API



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

LSM design

e Definition
— How to invoke permission check?
* By calling the initiated function pointers in security _ops
e Aka LSM hooks
— One hook is shown below:

static inline int security inode create (struct inode *dir,
struct dentry *dentry,
int mode)

if (unlikely (IS PRIVATE (dir)))
return 0;
return security ops->inode create (dir, dentry, mode);




Fall 2014:: CSE 506:: Section 2 (PhD)

LSM design - hooking

e Simple diagram of hooking

Process 1 | Process 2

Process N

\ / int 0x80

User Space

NV

System Call Handler

l

Kernel Space

System call Func ptr Hook to LSM LSM
open() Oxffffaaaa lsm_open(), Oxffffbbbb Ism_open()
read() Oxffffaaba Ism_read(), Oxffffbbcb Ism_read()
write() Oxffffaaca Ism_write(), Oxffffbbdb Ism_write()
getdents() Oxffffaada Ism_getdents(), Oxffffbbeb lsm_getdents()

q\\\‘ Stony Brook University



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

LSM design

 Placement

— Where to place those hooks?
* Entry of system call (not all of them)
* Determined by source code analysis

— Inline function
* E.g., security inode create



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

LSM design - hooking example

* open() hook process [ o ]
— Process syscall in user p — User Space
. zlpeefaa;:n open System Call Kernel Space
— Invoke syscall in kernel Y
— Lookup inode o i"‘mQ ivoeah drotones and inke)
— Check DAC — "hk
— Hook & check MAC I LsM
— Grant access { Sloves s vt ]
operations on inode?
Access inode

From Operating System Security (Fig 9.2)



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

LSM design

* Implementation
— Where to find the function which hooks point to?
— SELinux, AppArmor, LIDS, etc.

— Does placement need to change in different LSMs?
* Theoretically yes
* Practically, the placement of hooks is stabilized



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

SELinux at a glance

 Security Policies
— Centralized store for access control
— Can be modified by the SELinux system administrator
— Determined by security contexts (=user, role, type)
— Specification of permissions
— Labeled with information for each file

e Based on TE (Type Enforcement) and RBAC model

* Operations to objects for subjects
— append, create, rename, rwx, (un)link, (un)lock, ...

* Object classes
— file, IPC, network, object, ...



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Some valid questions

* How can SELinux internally incorporate with DAC?
— DAC then MAC

* Who writes the policy?
— Admin

* Isn't it hard to write a policy?

— Indeed, and complicated (for SELinux)

* What happens if there is wrong policy?
— Hell

APl names are admittedly confusing



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Security context

* Consist of three security attributes

— User identity (SID, Security identifier)
e SELinux user account associated with a subject or object
* Different from traditional UNIX account (i.e /etc/passwd)




B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Security context

* Consist of three security attributes

— Type or domain
* Postfix _t(i.e user_t, passwd_t, shadow t,...)
* Divide subjects and objects into related groups
* Typically type is assigned to an object, and domain to a process
* Primary attribute to make fine-grained authorization decisions



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Security context

* Consist of three security attributes

— Role (RBAC)

* Postfix _r (i.e sysadm_r, user_r, object r, ...)

User might have multiple roles

Associate the role with domains (types) that it can access
* Not assign permissions directly

Limits a set of permission ahead of time

If role is not authorized to enter a domain then denied



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Security context example

* Putting all together

— Alice wants to change her password
e SID alice with the user role, user r
* Role permitted to run typical user processes
* Any process with user_t to execute the passwd_exec t label

role user r types {user t user firefox t}

<perm> <sub type> <obj type>:<obj class> <op_ set>
Allow user t passwd exec t:file execute
Allow passwd t shadow_t:file {read write}

<file path expr> <obj context>
/usr/bin/passwd system u:object r:passwd exec t
/etc/shadow. * system u:object r:shadow t




B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Decision making with policy

e Access decision
— Based on security context
— allow, auditallow, dontaudit, and neverallow

* Q: how can we decide policy for a temporary object?
— temp processes (i.e fork) and files

e A: transition decision

— Process creation: domain transmission
— File creation: type transmission (labelling)

type transition <curr_type> <exe file type>:process <res_ type>
type transition user_ t passwd_exec_t:process passwd t




Fall 2014:: CSE 506:: Section 2 (PhD)

q\\\‘ Stony Brook University

Transition decision examples

 Process creation
— Domain decision

vi_t domain

Vi editor

|¢ command

* File creation

— Type decision

initrc_t domain

sort_t domain ftmp, a tmp_t directory

Init process

Sort utiity ‘ l‘fmsal":;r;tdt_ﬁrlzsuh. l

sshd_t domain

File creation without type transition

SSH server daemon

sysiogd_t domain {tmp, @ tmp_t directory

ftmp/log.tmp, a
5yslog process ‘/syd_oq_m

Process creation without
domain transition

Process creation with
domain transition

File creation with type transition

Directory and new fle
have same type

Directory and new file
have different type

From SELInux Ch2



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Implementation

* Policy sources

— .te files (type enforcement)
* Define rules and macros(m4) & assign permissions

— .fc files (file context)
* Define file contexts, supporting regular expression

— RBAC files
— User declarations

* Makefile (target: policy, install, ...)
* Policy compiler

— Merge all policies to policy.conf
— Generate policy binary, centralized policy storage



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

AppArmor at a glance

* Another mainstream of LSM implementation

* Much simpler framework than SELinux
— Targeted policy
— An “application security system”
— Pathname based

— Work in two modes:
* enforce mode and complain mode

— One policy file per application

* Used by some popular Linux distributions
— Ubuntu, openSUSE, etc.



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

How AppArmor works?

* Designed to be a complement to DAC
— Can’t provide complete access control

* Born to be targeted policy
—unconfined tin SELinux

* Application based access control
— One policy file per application
— Protect system against applications

* File + POSIX capabilities



Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

AppArmor profile

* Capability rules:

capability setuid,
capability dac override,

* Network rules:

network (read, write) 1inet,
deny network bind inet,

e File rules:

/path/to/file rw,
/dir/** r,




Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

SELInux vs AppArmor

* Whole system vs. only a set of applications

* Types & domains vs. defining permission directly

* Strict MAC implementation vs. Partially implement
* Extended attributes vs. pathname

* Difficulty to configure
— SELinux needs 4x bigger conf. file than AppArmor

* Overhead?
— 7% vs. 2%



B NN . N, R —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\‘ Stony Brook University

Conclusion

* SELinux and AppArmor can both greatly enhance
OS security.

* Choice depends on what you need.




