
Fall 2014:: CSE 506:: Section 2 (PhD)

Securing Linux

Hyungjoon Koo and Anke Li



Fall 2014:: CSE 506:: Section 2 (PhD)

Outline
• Overview

– Background: necessity & brief history
– Core concepts

• LSM (Linux Security Module)
– Requirements
– Design

• SELinux
– Key elements
– Security context: identity (SID), role, type/domain

• AppArmor
– Key elements
– Application policy profile

• SELinux vs AppArmor



Fall 2014:: CSE 506:: Section 2 (PhD)

Why a new access control model

• Limited traditional access control for Linux
– Discretionary Access Control (DAC)

• Provide only a coarse access control

• 9 bits model (rwx per owner, group and others)

• Has setuid, setgid and sticky bit - not enough

• Cases when a fine-grained access control needs
– Does passwd require root access to printers?

– Suppose I have a secret diary and the app to read it
• Can I restrict my app from reading/writing a socket over network?

– Alice might have multiple roles
• Surfing the web, writing a report, and managing a firewall



Fall 2014:: CSE 506:: Section 2 (PhD)

Brief history
• Increasing the demand for reference monitor in Linux

– A mechanism to enforce access control

– Originate from orange book from the NSA: too generic

• Adopting LSM in Linux Kernel
– Originally a set of kernel modules in 2.2, updated in 2.4

– LSM (Linux Security Module) Feature in 2.6
• SELinux developed by the NSA and released in 2001

• Default choice for Fedora/RedHat Linux

• Lots of early works
– Subdomain (AppArmor), Flask (SELinux), OpenWall, …



Fall 2014:: CSE 506:: Section 2 (PhD)

Reference monitor
• A component that authorizes access requests at the RMI defined by 

individual hooks which invokes module to submit a query to the policy store

From Operating System Security (Fig 2.3)



Fall 2014:: CSE 506:: Section 2 (PhD)

Core concepts
• Idea: Define policies to decide if applications/users 

have the privilege to proceed a given operation
– MAC: Mandatory access control

– Least Privileges

• Broadly covered security policy
– To all subjects, all objects and all operations

– As everything in Linux is represented as a FILE
• files, directories, devices, sockets, ports, pipes, and IPCs



Fall 2014:: CSE 506:: Section 2 (PhD)

Linux Security Module (LSM)
• Implementation of a reference monitor

• Requirements
– Modularized security

– Loadable modules

– Centralized MAC

– LSM API



Fall 2014:: CSE 506:: Section 2 (PhD)

LSM design
• Definition

– How to invoke permission check?
• By calling the initiated function pointers in security_ops
• Aka LSM hooks

– One hook is shown below:

• Placement

• Implementation

static inline int security_inode_create (struct inode *dir,

struct dentry *dentry,

int mode)

{

if (unlikely (IS_PRIVATE (dir)))

return 0;

return security_ops->inode_create (dir, dentry, mode);

}



Fall 2014:: CSE 506:: Section 2 (PhD)

LSM design - hooking
• Simple diagram of hooking

User Space

Kernel Space

Process 1 Process 2 … Process N

System Call Handler

System call Func ptr Hook to LSM

open() 0xffffaaaa lsm_open(), 0xffffbbbb

read() 0xffffaaba lsm_read(), 0xffffbbcb

write() 0xffffaaca lsm_write(), 0xffffbbdb

getdents() 0xffffaada lsm_getdents(), 0xffffbbeb

… … …

int 0x80

lsm_open()

lsm_read()

lsm_getdents()

LSM

lsm_write()



Fall 2014:: CSE 506:: Section 2 (PhD)

LSM design
• Definition

• Placement
– Where to place those hooks?

• Entry of system call (not all of them)

• Determined by source code analysis

– Inline function
• E.g., security_inode_create

• Implementation



Fall 2014:: CSE 506:: Section 2 (PhD)

LSM design – hooking example
• open() hook process

– Process syscall in user
• file path

• operation

– Invoke syscall in kernel

– Lookup inode

– Check DAC

– Hook & check MAC

– Grant access

From Operating System Security (Fig 9.2)



Fall 2014:: CSE 506:: Section 2 (PhD)

LSM design
• Definition

• Placement

• Implementation
– Where to find the function which hooks point to?

– SELinux, AppArmor, LIDS, etc.

– Does placement need to change in different LSMs?
• Theoretically yes

• Practically, the placement of hooks is stabilized



Fall 2014:: CSE 506:: Section 2 (PhD)

SELinux at a glance
• Security Policies

– Centralized store for access control
– Can be modified by the SELinux system administrator
– Determined by security contexts (=user, role, type)
– Specification of permissions
– Labeled with information for each file

• Based on TE (Type Enforcement) and RBAC model

• Operations to objects for subjects
– append, create, rename, rwx, (un)link, (un)lock, …

• Object classes
– file, IPC, network, object, …



Fall 2014:: CSE 506:: Section 2 (PhD)

Some valid questions 
• How can SELinux internally incorporate with DAC?

API names are admittedly confusing

• Who writes the policy?

• Isn't it hard to write a policy?

• What happens if there is wrong policy?

– DAC then MAC

– Admin

– Indeed, and complicated (for SELinux)

– Hell



Fall 2014:: CSE 506:: Section 2 (PhD)

Security context
• Consist of three security attributes

– User identity (SID, Security identifier)
• SELinux user account associated with a subject or object

• Different from traditional UNIX account (i.e /etc/passwd)

– Type or domain

– Role (RBAC)



Fall 2014:: CSE 506:: Section 2 (PhD)

Security context
• Consist of three security attributes

– User identity (SID, Security identifier)

– Type or domain
• Postfix _t (i.e user_t, passwd_t, shadow_t, …)

• Divide subjects and objects into related groups

• Typically type is assigned to an object, and domain to a process

• Primary attribute to make fine-grained authorization decisions

– Role (RBAC)



Fall 2014:: CSE 506:: Section 2 (PhD)

Security context
• Consist of three security attributes

– User identity (SID, Security identifier)

– Type or domain

– Role (RBAC)
• Postfix _r (i.e sysadm_r, user_r, object_r, …)

• User might have multiple roles

• Associate the role with domains (types) that it can access
• Not assign permissions directly

• Limits a set of permission ahead of time

• If role is not authorized to enter a domain then denied



Fall 2014:: CSE 506:: Section 2 (PhD)

Security context example
• Putting all together

– Alice wants to change her password 
• SID alice with the user role, user_r

• Role permitted to run typical user processes

• Any process with user_t to execute the passwd_exec_t label

<perm> <sub_type> <obj_type>:<obj_class> <op_set>

Allow user_t passwd_exec_t:file execute

Allow passwd_t shadow_t:file {read write}

<file_path_expr> <obj_context>

/usr/bin/passwd system_u:object_r:passwd_exec_t

/etc/shadow.* system_u:object_r:shadow_t

role user_r types {user_t user_firefox_t}



Fall 2014:: CSE 506:: Section 2 (PhD)

Decision making with policy
• Access decision

– Based on security context

– allow, auditallow, dontaudit, and neverallow

• A: transition decision
– Process creation: domain transmission
– File creation: type transmission (labelling)

– temp processes (i.e fork) and files

• Q: how can we decide policy for a temporary object?

type_transition <curr_type> <exe_file_type>:process <res_type>

type_transition user_t passwd_exec_t:process passwd_t



Fall 2014:: CSE 506:: Section 2 (PhD)

Transition decision examples
• Process creation 

– Domain decision

From SELinux Ch2

• File creation 
– Type decision



Fall 2014:: CSE 506:: Section 2 (PhD)

Implementation
• Policy sources

– .te files (type enforcement)
• Define rules and macros(m4) & assign permissions

– .fc files (file context)
• Define file contexts, supporting regular expression

– RBAC files

– User declarations

• Makefile (target: policy, install, …)

• Policy compiler
– Merge all policies to policy.conf

– Generate policy binary, centralized policy storage



Fall 2014:: CSE 506:: Section 2 (PhD)

AppArmor at a glance
• Another mainstream of LSM implementation

• Much simpler framework than SELinux
– Targeted policy

– An “application security system”

– Pathname based

– Work in two modes: 
• enforce mode and complain mode

– One policy file per application

• Used by some popular Linux distributions
– Ubuntu, openSUSE, etc.



Fall 2014:: CSE 506:: Section 2 (PhD)

How AppArmor works?
• Designed to be a complement to DAC

– Can’t provide complete access control

• Born to be targeted policy
– unconfined_t in SELinux

• Application based access control
– One policy file per application

– Protect system against applications

• File + POSIX capabilities



Fall 2014:: CSE 506:: Section 2 (PhD)

AppArmor profile
• Capability rules: 

• Network rules:

• File rules:

capability setuid,

capability dac_override,

network (read, write) inet,

deny network bind inet,

/path/to/file rw,

/dir/** r,



Fall 2014:: CSE 506:: Section 2 (PhD)

SELinux vs AppArmor
• Whole system vs. only a set of applications

• Types & domains vs. defining permission directly

• Strict MAC implementation vs. Partially implement

• Extended attributes vs. pathname

• Difficulty to configure
– SELinux needs 4x bigger conf. file than AppArmor

• Overhead?
– 7% vs. 2%



Fall 2014:: CSE 506:: Section 2 (PhD)

Conclusion

• SELinux and AppArmor can both greatly enhance 
OS security.

• Choice depends on what you need.


