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ABSTRACT
A function recognition problem serves as a basis for further binary
analysis and many applications. Although common challenges for
function detection are well known, prior works have repeatedly
claimed a noticeable result with a high precision and recall. In this
paper, we aim to fill the void of what has been overlooked or misin-
terpreted by closely looking into the previous datasets, metrics, and
evaluations with varying case studies. Our major findings are that
i) a common corpus like GNU utilities is insufficient to represent
the effectiveness of function identification, ii) it is difficult to claim,
at least in the current form, that an ML-oriented approach is scien-
tifically superior to deterministic ones like IDA or Ghidra, iii) the
current metrics may not be reasonable enough to measure vary-
ing function detection cases, and iv) the capability of recognizing
functions depends on each tool’s strategic or peculiar choice. We
perform re-evaluation of existing approaches on our own dataset,
demonstrating that not a single state-of-the-art tool dominates all
the others. In conclusion, a function detection problem has not yet
been fully addressed, and we need a better methodology and metric
to make advances in the field of function identification.

CCS CONCEPTS
• Security andprivacy→ Software security engineering; Soft-
ware reverse engineering.

KEYWORDS
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1 INTRODUCTION
Function identification (or recognition) serves as a basis for re-
versing executable binaries because a function plays a pivol role
of a logical chunk to understand the high-level semantics from a
low-level binary. In this regard, a majority of binary analysis tools
(e.g., BAP [7], BitBlaze [6], angr [25], radare [22], IDA Pro [16],
Ghidra [9], rev.ng [11]) often necessitate detecting function bound-
aries for further analysis by default. Likewise, a number of other
tasks can be performed on a function level including but not limited
to control flow integrity (CFI), binary similarity analysis, binary
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instrumentation such as code randomization or re-optimization,
type inference, and vulnerability detection.

Obtaining a function boundary on the availability of symbols
or debugging information is trivial because the information read-
ily contains the location and size of the function. However, it be-
comes drastically challenging when those information is stripped
off, which is more common than not in practice.

A function identification problem begins with accurately recog-
nizing all machine instructions. Once such a disassembly process
is complete, one can seek a function by maintaining a database
of (heuristically) known signatures like function prologues and
epilogues. However, these two outwardly simple procedures are
both challenging. First, accurate and robust disassembly is non-
trivial. The predominant approach of disassembly is twofold. One
popular way is to linearly disassemble all code (e.g., objdump),
which is straightforward by mechanically converting byte codes
into human-readable instructions. However, it suffers from robust-
ness when code and data are intermixed (e.g., raw data in a code
region, code pointer in a data region) because data may be mis-
takenly converted into code, and vice versa. Another means is a
recursive traversal from an entry point of a binary that follows a
direct control flow transfer until no new code region is discovered.
Yet, indirectly reachable (or unreachable) functions may not always
be statically identified. Inaccurate disassembly hampers applying
function signature matching. Second, varying known compiler opti-
mization techniques can blur the signature of a function even after
successful disassembly including i) a non-returning function makes
a function epilogue unclear, ii) a multi-entry function allows for
jumping into the middle of a function, iii) a non-contiguous func-
tion may span multiple locations, or iv) compiler-specific heuristics
may render a function boundary opaque. Besides, maintaining a
signature database to support a new compiler and optimization
faces another challenge as well as lack of a predefined pattern for a
highly optimized function.

Despite the aforementioned challenges, many prior works have
repeatedly demonstrated remarkable results with a high precision
and recall (i.e., mostly 93% or above). Recent advances harness a
machine learning technique (e.g., RNN), which claims to achieve
even higher accuracy [14, 24]. In this paper, we revisit previous
approaches including recent advances from a different angle in the
domain of function identification. Note that our objective is neither
to verify the correctness of prior evaluations nor to rank the existing
work by comparison because there is no doubt about empirical
results that are accurate and reproducible. Instead, we attempt to
fill the void of what may have been overlooked or misinterpreted by
closely looking into the previous corpus for evaluation, metrics, and
evaluation results with the following five research perspectives in
mind: i) appropriateness of the previous corpus (e.g., GNU utilities),
ii) re-interpretation of the prior evaluations, iii) reasonableness of
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the current metrics, iv) effectiveness of ML-oriented techniques,
and v) faithfulness of the existing tools for function identification.

First, we thoroughly assess the appropriateness of GNU utilites
because most subsequent works have employed them for their eval-
uations after the initial release by ByteWeight [5]. We have fully
quantified the bias of the dataset (first claimed by Nucleus [4]), and
found that a large number of redundant functions are inevitably
inserted due to a common static library during compilation. In par-
ticular, function identification with machine learning techniques
often takes a normalization process (i.e., pre-processing) to feed
instructions to a model. This renders an overfitting problem un-
avoidable with too many redundant functions (e.g., solely 12.1% re-
mains unique after normalization). Second, we re-interpret that the
accuracy of re-implementation of Shin’s RNN [24] in LEMNA [14],
unveiling that it comes from a different metric (i.e., a series of true
negatives per each following byte rather than per each function).
Third, we investigate varying case studies to determine the cor-
rectness of a function boundary that the current metrics cannot
reasonably cover, necessitating that a better metric be explored
for a fair comparison. Fourth, our re-evaluation with a different
dataset demonstrates that it is difficult to claim that the current
form of ML-oriented approaches surpasses rule-based ones like IDA
Pro [16] or Ghidra [9]. Fifth, we conduct a comparison of function
recognition results between different tools. Our finding shows that
the outcome may considerably relies on the peculiarity of each
tool; e.g., IDA Pro seeks functions with a recursive traversal, which
does not report unused or unreachable ones on purpose (under re-
porting), whereas Ghidra utilizes FDE information to explore more
functions, which sometimes leads over reporting. Likewise, the
performance of ML-based approaches may highly vary depending
on a learning dataset.

In conclusion, a function identification problem has not been
fully resolved yet even with existing machine learning techniques,
necessitating a better methodology and metrics. The following
summarizes the key findings by looking back on prior function
identification approaches.
• A common corpus (GNU utilities) is insufficient to represent the
effectiveness of function identification.

• We investigate various edge cases that the current metrics may
not cover.

• Our re-evaluation with a new dataset demonstrates that it is
difficult to confidently claim that the effectiveness of ML-oriented
approach is indeed superior to rule-based approaches.

• Revisiting existing approaches, not a single tool dominates all
the others.

We will release our dataset 1 to foster future research of function
identification.

2 REVISITING FUNCTION IDENTIFICATION
An executable binary that is stripped off valuable information
presents difficulties in understanding underlying behaviors. Analyz-
ing malware or any off-the-shelf binaries is commonly encountered.
For demystifying the intent of a program, a binary analyst digs into
a wealth of information through static code (e.g., instructions, basic
blocks, functions), data (e.g., global and local variables, strings),
1https://github.com/SecAI-Lab/func-identication

and structure (e.g., control flow graphs, call graphs, jump tables).
Meanwhile, dynamic analysis allows one to capture a wide range
of interactions with an operating system by running the code.

In particular, identifying a function can be fruitful to roughly
sketch the behavior and intent of a program to begin with because
it often represents a logical chunk that performs a meaningful
task. In this section, we briefly describe the definition of a function
detection problem, and common evaluation criteria, followed by
outlining prior approaches.

2.1 Problem Definition
A function recognition problem aims to discover a set of (binary)
functions in case that no symbol or debugging information is readily
available, which includes i) function starts and ii) function bound-
aries (both starts and ends). Formally, let each byte be a bi where
the entire code of a binary consists of n bytes; then a set of consec-
utive bytes in a code region would be {b1,b2, ...,bn }. Suppose that
the code region contains k functions whose start and end can be
represented as (si , ei ).

Under this setting, as with prior work [2, 5], we define the fol-
lowing two tasks: i) function starts identification; find a set of the
beginning of all functions: {s1, s2, ..., sk }, and ii) function bound-
aries identification; find a set of the boundaries of all functions:
{(s1, e1), ..., (sk , ek )}. As a function may be split into multiple areas
(non-contiguous), a more general expression of finding a function
Fi would be: {(si ,b1, ...,bv ), ...(bw ,bw+1, ..., ei )} where the middle
indexes of v andw may indicate arbitrary positions.

2.2 Evaluation Metrics
Let a set of true positives and true negatives (i.e., aligned with
ground truths), false positives (i.e., identified as a function where it
is not), and false negatives (i.e., missed a function where it is) be
TP, TN, FP, and FN, respectively. The following defines a precision
(P ), recall (R), F1 score, and accuracy (A).

P =
|TP |

|TP | + |FP |
, R =

|TP |

|TP | + |FN |
, F1 =

2PR
P + R

(1)

A =
|TP | + |TN |

|TP | + |TN | + |FN | + |FP |
(2)

P and R are defined as in Equation 1: a high precision means the
rate of incorrectly identified functions (FP) is low, and a high recall
means the rate of missing functions (FN) is low. The F1 represents
a single metric with the harmonic mean of P and R. Accuracy can
be computed as the rate of ground truths out of all cases (Equa-
tion 2). For all evaluation metrics, the higher values represent better
performance.

2.3 Prior Approaches
We classify the existing function detection techniques into two
categories: a rule-based approach (i.e., using algorithms or known
signatures) and a machine learning based approach (i.e., using sto-
chastic models inferred from a given dataset).

Rule-based Approach. UNSTRIP [18] introduces semantic de-
scriptors (i.e., system calls and concrete argument values) that
represent library functions as a fingerprint for further function
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Table 1: Comparison of the existing works for function detection. (*) indicates the work that has been included for our evalu-
ation.

Tool Artifacts Year Dataset Arch Type Compiler OptLevel # Binaries Compared With F1

Nucleus* [4] Y 2017 SPEC2006, ngnix, lighttpd,
opensshd, vsftpd, exim x86/x64 ELF/PE clang/VS O0-O3 476 Dyninst, ByteWeight, IDA 0.970

Function-
interface [21] N 2017 GNU Utils,

SPEC2006, GLIBC x86/x64 ELF clang/gcc O0-O3 2,488 ByteWeight, Shin:RNN 0.985

Jima [2] Y 2019 GNU Utils,
SPEC2017, Chrome x86/x64 ELF clang/gcc/icc O0-O3 2,860 ByteWeight, Shin:RNN,

IDA Free, Ghidra, Nucleus 0.997

Nathan:CRF [23] N 2007 Unknown x86 ELF/PE gcc/icc/VS Unknown 1,171 N/A N/A
ByteWeight* [5] Y 2014 GNU Utils x86/x64 ELF/PE clang/gcc O0-O3 2,200 Dyninst, ByteWeight, BAP, IDA 0.929
Shin:RNN* [24] N 2015 GNU Utils x86/x64 ELF/PE clang/gcc O0-O3 2,200 ByteWeight 0.983
FID [28] N 2017 GNU coreutils x86/x64 ELF clang/gcc/icc O0-O3 4,240 IDA, ByteWeight 0.930
LEMNA* [14] Y 2018 GNU Utils x64 ELF gcc O0-O3 2,200 N/A N/A

identification. It aims to generate smart patterns to detect even
unknown functions rather than fully deterministic byte-level sig-
natures. Nucleus [4] presents a function detection algorithm in a
compiler agnostic fashion. With linearly disassembled code, Nu-
cleus detects basic blocks and builds an inter-procedural control
flow graph (ICFG) in the beginning. Once a direct call invocation
over the ICFG reveals function entry blocks, Nucleus discovers
either unreachable or indirectly reachable functions (isolated from
the initial ICFG) via intra-procedural control flow analysis. Qiao
et al. [21] develop another means based on static analysis. Similar
to Nucleus, it collects function candidates that cannot be directly
reachable, followed by checking whether they are associated with
a function interface, including stack discipline, control-flow prop-
erties, and data-flow properties (i.e., parameter passing). Jima [2]
is a tool suite that incorporates a series of analysis algorithms for
function boundary detection, including an exception handling rou-
tine, jump pointer, tail call chain, and missing function detection
(i.e., gaps between functions).

As a commercial tool, IDA Pro [16] offers powerful functionali-
ties and tools for reversing, which is equipped with disassembly,
decompilation and debugging features for better code analysis;
however, its internal heuristics (i.e., pattern database) for function
detection remain proprietary and thus unknown. It is noteworthy
mentioning that IDA ships with a known function identification
algorithm, dubbed FLIRT [15] that maintains a signature database
of each function for a standard library, however, it cannot be ap-
plied to general function identification. Similarly, Ghidra [9] is an
emerging open-source disassembler that offers a suite of reversing
tools and decompiler. It provides a few built-in function analyz-
ers such as FunctionStartAnalyzer. The analyzers begin with
identifying every address referenced by a call instruction as the
beginning of a function, and then utilizes a static signature database
that records a known function start pattern according to a com-
piler and architecture [10]. Likewise, other binary analysis tools
provide a comparable mechanism (i.e., manually generated signa-
tures) for function detection such as BAP [7], BitBlaze [6], angr [25],
radare [22], and rev.ng [11].

Machine Leaning Based Approach. One of the early works [23]
based on machine learning adopts a model with a conditional ran-
dom field (CRF) for identifying function entry points (FEPs). The
model takes both idiom features (i.e., instruction sequences) and
structure features (i.e., control flow) into account to classify FEPs in

a binary code. Byteweight [5] builds a weighted prefix tree to recog-
nize function starts using a precomputed signature at training time.
The prefix tree holds a likelihood of a function constructed from
a training data set where each node represents either a byte or an
instruction, e.g, learning the probability of an FEP from a sequence
of instructions (i.e., path from the root to the given node). Note
that BAP [7] currently incorporates the Byteweight model as a plu-
gin [13]. FID [28] proposes the combination of symbolic execution
and machine learning, mostly focusing on identifying an FEP block.
It has the internal representations of each basic block semantics
with assignment formulas (e.g., stack registers) and memory access
behavior (e.g., memory read), converting them into numeric feature
vectors for a classifier. FID takes three learning algorithms (i.e.,
LinearSVC, AdaBoost, and GradientBoosting) for better prediction.

Meanwhile, Shin et al. [24] utilizes a deep learning approach
for the first time, which leverages a bidirectional recurrent neural
networks (RNN) model with a single hidden layer to tackle both
function starts and boundary identification. Despite the absence
of clear explanations for the underlying mechanism of the model,
the empirical results consistently demonstrate a very high preci-
sion and recall for binaries in different formats (e.g., ELF and PE),
and different architectures (e.g., x86 and x86_64 binaries). Recently,
LEMNA [14] introduces the first explainable model for deep learn-
ing based security applications. It integrates fused lasso [27] for
handling a feature dependency problem with a mixture regression
model [19] that achieves an accurate approximation for a local deci-
sion boundary. In particular, LEMNA applies the model to function
start detection for explaining the reasons for various false positive
and false negative cases. We employ LEMNA’s reimplementation
of the Shin et al.’s approach for our evaluation as the original im-
plementation is unavailable.

Summary of Two Approaches. Table 1 summarizes a compari-
son of previous approaches in the area of function identification at
a glance with varying criteria including the availability of a tool,
publication year, dataset information (architecture, file format, com-
piler, optimization level, number of binaries for testing), compared
work, and reported F1 values (for x86_64 binaries). All work target
either x86 or x86_64 architecture, mostly focusing on ELF. Interest-
ingly, after the first public release of the dataset (i.e., GNU Utilities)
from ByteWeight [8], it becomes a de-facto standard for evaluation;
every work (but Nucleus [4]) includes that corpus. Note that the
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F1 values are for recognizing the beginning of functions (not func-
tion boundaries) on average. Most tools reported noticeable results,
ranging from 0.929 to 0.997.

3 CHALLENGES OF FUNCTION
IDENTIFICATION IN AN EXECUTABLE

A binary function that resides in a code section differs from a
human-written function that conveys semantics in a source code.
In a nutshell, every binary function originates from a function
that is i) defined by a user (e.g., source code written by a devel-
oper), ii) generated by a compiler (e.g., stack canary check, control
flow integrity routines), or iii) inserted by a linker (e.g, CRT or C
RunTime functions). This section discusses common challenges
for identifying functions in a stripped binary with a motivating
example.

Motivating Example. IDA Pro [16] is one of the most popular
reversing tools for many years. It incorporates a variety of different
techniques to accurately analyze a given binary.

1 0x4338F0 push r14
2 0x4338F2 push rbx
3 0x4338F3 push rax
4 0x4338F4 mov rbx, rsi
5 0x4338F7 mov r14, rdi
6 0x4338FA mov rax, [rsi+10h]
7 0x4338FE cmp rax, 2FFh
8 0x4340E2 mov rdi, r14 [jumptable 0x433A0B case 1]
9 0x4340E5 mov rsi, rbx
10 0x4340E8 add rsp, 8
11 0x4340EC pop rbx
12 0x4340ED pop r14
13 0x4340EF jmp sub_434620
14 ; Wrong Subroutine: Case (I)
15 0x4340F4 mov rdi, r14 [DATA XREF: .rodata:0x4A7C18]
16 0x4340F7 mov rsi, rbx
17 0x4340FA xor edx, edx
18 0x4340FC add rsp, 8
19 0x434100 pop rbx
20 0x434101 pop r14
21 0x434103 jmp sub_434BE0
22 ; End of Case (I)
23 ; Wrong Subroutine: Case (II)
24 0x434108 mov rdi, r14 [DATA XREF: .rodata:0x4A7C78]
25 0x43410B mov rsi, rbx
26 0x43410E add rsp, 8
27 0x434112 pop rbx
28 0x434113 pop r14
29 0x434115 jmp sub_434630
30 ; End of Case (II)
31 0x43411A mov esi, offset
32 0x43411F mov rdi, r14 [CODE XREF: sub_4338F0+177]
33 0x434122 mov rdx, rbx
34 0x434125 add rsp, 8
35 0x434129 pop rbx
36 0x43412A pop r14
37 0x434156 mov rdi, r14 [CODE XREF: sub_4338F0+857]
38 0x434159 mov rsi, rbx
39 0x43415C add rsp, 8
40 0x434160 pop rbx
41 0x434161 pop r14
42 0x434163 jmp sub_434830
43 ; Termination of a Function

Listing 1: Example of mitstakenly identifying functions
from randlib-amd64-clang-O1 with IDA Pro.

Listing 1 shows that IDA Pro mistakenly reports two regions as
the beginning of functions whereas the ground truth is that the
entire chunk of disassembled code consists of a single function. In
this example, IDA Pro successfully discovers a jump table (Line 8),
cross references in a data section (Line 15 and 24), and those in
a code section (Line 32 and 37) after a control flow analysis. Two

subroutines (Line 15-21 and 24-29) have been determined as sepa-
rate functions probably by acknowledging that it clears the stack
(line 18 and 26), followed by popping two registers (line 19-20 and
27-28) with a unconditional jump (Line 21 and 29) at the end. Indeed,
the sequences of such instructions are indistinguishable from the
actual function termination (Line 39-42), which must be making
IDA Pro confusing. This structure can be often observed in case of
early returning if a certain condition is met within a function (and
possibly a control flow is transferred by a code pointer). As shown
in this instance, it is challenging to precisely detect a function even
with a cutting-edge disassembly tool.

Challenges. The common challenges for function detection in
an excutable binary are well-known, mainly due to compiler op-
timizations and code regions intermixed by code and data. First,
optimizated code often blurs a clear signature of a function prologue
and epilogue, rendering its boundary detection less straightforward
because of the following reasons.

• It is common that a function becomes part of another function
(i.e., function inlining); it enhances program performance by
eliminating a burden on both function prologue and epilogue.

• A call invocation happens at the end of a procedure (i.e., tail
call); oftentimes compiler optimization replaces it with a single
jump (instead of pop and ret) for boosting performance instead
of returning to an original caller.

• A single routine may be split into multiple locations (i.e., non-
contiguous function).

• Different function symbols can point to the same address when
they are under identical implementation; it often occurs when
a derived class inherits a method from a parent class in object
oriented programming by containing the same code pointer in a
virtual table.

• Compiler-generated code or compiler-specific heuristics may
render a function identification process opaque, including non-
returning functions ending with a call or multi-entry functions
where a call invokes the middle of a function.

Second, another challenge arises from an incomplete disassem-
bly process that complicates further function signature matching.
Simply put, a linear disassembly suffers from robustness due to
indistinguishability of code and data in a code region whereas a
recursive traversal cannot handle indirectly reachable or unused
functions. Third, code from a manually written assembly can make
a function unrecognizable because there are many non-standard
way of writing an assembly language. One may insert an overlap-
ping instruction or dead one that would be never executed (i.e.,
anti-disassembly techniques) with the freedom of code represen-
tation. Similarly, if a function is not explicitly declared, the entire
object file may be considered as a single function, which also makes
a function boundary obscure.

4 A CLOSE LOOK BACK ON FUNCTION
IDENTIFICATION

In this section, we look back on a function identification problem
mainly focusing on five research questions. Note that we have
carefully investigated plentiful cases to support our claims.
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Table 2: 10 Groups for 10-fold cross validation for
ByteWeight.

Group Files Funcs Set Group Files Funcs Set
Group 1 57 19,996 train Group 6 49 12,236 train
Group 2 55 9,475 train Group 7 48 12,197 train
Group 3 51 18,442 train Group 8 46 12,324 train
Group 4 57 13,779 train Group 9 46 20,680 test
Group 5 55 13,481 train Group 10 52 13,519 train

4.1 Research Questions
We revisit prior approaches by closely looking into the previ-
ous datasets and evaluations by defining the following research
questions that focus on 1 appropriateness of dataset, 2 re-
interpretation of prior evaluations, 3 effectiveness of ML tech-
niques, 4 rethinking of metrics, and 5 faithfulness of a tool for
function identification.

• RQ1. Is the previous dataset (e.g., GNU utilities) appropriate for
the effectiveness of a function detection technique?

• RQ2. Has a function detection problem been (almost) resolved
as reported with a very high F1 or accuracy?

• RQ3. Is the current metric (i.e., precision, recall and F1) fair
enough to measure function identification in general?

• RQ4. Are recent advances with an ML-centered approach (e.g.,
deep learning) superior to a rule-based one?

• RQ5. Is there a tool’s own characteristic (i.e., idiosyncrasy that
arises from a unique algorithm or behavior)? There may be a
hurdle to simply pick the best function identification tool that
dominates all others.

Final Goal. Our objective is neither to re-verify the correctness
of prior work nor to rank the existing approaches by comparison.
Rather, we attempt to fill the gaps that may have been overlooked
or misinterpreted by answering the above research questions, and
then eventually to seek whether a function recognition problem has
been fully addressed. To this end, we conduct our own experiments
with a new dataset in §5.

4.2 Appropriateness of Corpus
This section delves into one of the most popular corpus, GNU
utilities that a majority of previous works in the field of function
identification employs for evaluation. The GNU utilities consist of
16 binutils, 104 coreutils and nine findutils. In particular,
all subsequent works but Nucleus [4] use the same corpus for their
evaluations since the first release of ByteWeight’s GNU utilities [8]
as in Table 6. The publicly available dataset, in general, is quite
beneficial to foster the future work because the common corpus
allows for a fair comparison from different approaches. However,
it is important to examine that the dataset should be moderately
representative to assess a function identification problem without
a bias.

Nucleus has first claimed that the released dataset of GNU utili-
ties are too biased to be generalized with a limited assessment. To
confirm such a claim, we have quantified the bias of the whole
dataset, 2, 200 binaries, adopted by ByteWeight. Note that, for
simplicity, we solely focus on x64 binaries compiled with gcc.

ByteWeight internally performs instruction normalization as a pre-
processing step before generating a weighted tree, which converts
both an immediate value and the target of a call/jump instruc-
tion into a generalized value 2, toward effectiveness and efficiency.
Although the normalization step is essential to apply a machine
learning technique, the problem is that only 17.6K (12.1%) out of the
whole 146K functions remain unique normalized functions (NFs)
once a normalization process is complete. Too many redundant
data unavoidably faces an overfitting problem. Table 2 shows 10
different groups utilized in ByteWeight [8] with k-fold cross vali-
dation (k = 10). Indeed, 19.8K NFs (91.4%) in a test set have been
discovered in a train set when selecting Group 9 as a test set in
Table 2. We also discovered that 10K NFs are shown at least more
than twice across the dataset, indicating that a severe overfitting is
highly likely at all times.

1 ; // binutils - ar
2 ; void yyset_lineno(int line_number) {
3 ; yylineno = line_number;
4 ; }
5
6 0x432273: push rbp
7 0x432274: mov rbp,rsp
8 0x432277: mov DWORD PTR [rbp-0x4],edi
9 0x43227a: mov eax,DWORD PTR [rbp-0x4]
10 0x43227d: mov DWORD PTR [rip+0x378a81],eax
11 0x432283: pop rbp
12 0x432284: ret
13
14 ; // binutils - as
15 ; static void set_allow_index_reg (int flag) {
16 ; allow_index_reg = flag;
17 ; }
18
19 0x4049c8: push rbp
20 0x4049c9: mov rbp,rsp
21 0x4049cc: mov DWORD PTR [rbp-0x4],edi
22 0x4049cf: mov eax,DWORD PTR [rbp-0x4]
23 0x4049d2: mov DWORD PTR [rip+0x30fbd8],eax
24 0x4049d8: pop rbp
25 0x4049d9: ret

Listing 2: Example of an identical function pair after nor-
malization.

The redundancy mainly arises from a static library in common
during compilation: over a hundered of binaries from coreutils
take a shared library of libcoreutils.a, including 776 common
functions from 257 object files. Because the granularity of consoli-
dation at link time is an object file, the entire functions inside the
object become part of a final executable when even a single function
would be in use, which inevitably introduces a substantial number
of duplicate functions across the corpus.

Another interesting finding is that there are a considerable num-
ber of NFs even between different functions from different binaries.
For instance, Listing 2 depicts two binary functions that are iden-
tical after normalization. The source code of those functions (line
1-4, 14-17) similarly takes a single integer as a parameter and then
assigns it into a local variable. In this example, there are 16 identical
NFs across six binaries.

2For verification, we normalize an immediate with a single value whereas ByteWeight
has a few different ones (i.e., zero, positive, negative), however, it does not significantly
change the final outcome.
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4.3 Re-interpretation of Prior Evaluations
In this section, we revisit prior evaluations that may lead to a mis-
interpretation that the function detection problem has been solved
despite myriad hurdles described in Section 3. ByteWeight reports
an F1 value of 98.8% for ELF x64, and similarly the RNN model
proposed by Shin et al.achieves 98.3%. LEMNA has re-implemented
Shin’s RNN model for function identification and reported a result
comparable to the original one (F1 of 99.4%). In particular, LEMNA
achieves an extremely high accuracy, 99.99%, across all optimiza-
tion levels. In the same vein, other works consistently showcase a
remarkable outcome (Table 1).

It is not questioned that the empirical results are accurate and
reproducible, however, as discussed in Section 4.2, we claim that
one reason for a high detection rate partially stems from an inappro-
priate corpus. To this end, we further carry out several experiments
to support our claim. First, we employ a relatively new standard
dataset, SPEC2017, to confirm that the signature of ByteWeight
works well in general. Table 8 shows F1 is close to 61.7, which is far
beyond the reported value. After retraining the ByteWeight model
with SPEC2017, we obtain an F1 of 78.0. Second, we attempt to
reproduce the accuracy of Shin’s RNN model (source unavailable)
with our dataset from the LEMNA’s open source implementation,
obtaining 94.5 and 86.1 as a precision and recall (See Table 8), re-
spectively. Indeed, we are able to obtain an overly high accuracy as
claimed, but it turns out that the accuracy comes from the means of
counting true negatives. As Shin’s bidirectional RNN model deter-
mines if the next byte is a function start upon a given sequence of
bytes (i.e., input ofn bytes as a hyperparameter), it results in a series
of decisions per each following byte. If the size of a binary is s , s −n
decisions would produce a large number of true negatives because
a majority of bytes do not represent the beginning of a function,
which makes accuracy reach 99.99%, according to Equation 2.

1 MagickExport ImageInfo *AcquireImageInfo(void) {
2 ImageInfo *image_info;
3 image_info=(ImageInfo *) AcquireMagickMemory(sizeof(*

image_info));
4 if (image_info == (ImageInfo *) NULL)
5 ThrowFatalException(ResourceLimitFatalError ,"

MemoryAllocationFailed");
6 GetImageInfo(image_info);
7 return(image_info);
8 }
9
10 ; ImageInfo *__cdecl AcquireImageInfo()
11 0x4C6BC0 push rbx
12 0x4C6BC1 mov edi, 4198h ; size
13 0x4C6BC6 call AcquireMagickMemory
14 0x4C6BCB test image_info , image_info
15 0x4C6BCE jz loc_4C6BE0
16 0x4C6BD0 mov rbx, image_info
17 0x4C6BD3 mov rdi, image_info ; image_info
18 0x4C6BD6 call GetImageInfo
19 0x4C6BDB mov rax, image_info
20 0x4C6BDE pop image_info
21 0x4C6BDF retn
22 0x4C6BE0 call AcquireImageInfo.part.2
23 ...
24 ; ImageInfo *__cdecl AcquireImageInfo.part.2()
25 0x402554 push rbx
26 0x402555 sub rsp, 40h
27 0x402559 mov rdi, rsp ; exception
28 ...
29 0x4025C4 call DestroyExceptionInfo
30 0x4025C9 call MagickCoreTerminus
31 0x4025CE mov edi, 1 ; status
32 0x4025D3 call __exit

Listing 3: Example of a non-continous function and its
disassembly after optimization.

4.4 Rethinking of Current Metrics
This section expands our concern (both unsuitable dataset and
evaluation that may lead the misinterpretation of a result) that the
current metrics (i.e., precision, recall, and F1 shown in Equation 1)
may not be fair as a means to measure the effectiveness of func-
tion identification. We provide several case studies to rethink the
suitability of the current metrics for function detection.

Non-continuous Functions. Listing 3 shows the code snippet
(Line 1-8) and its disassembly from imagick_r-amd64-gcc-O3.
A compiler optimization takes an exception handler apart (Line
24-32), holding two separate binary functions as a ground truth
(i.e., AcquireImageInfo and AcquireImageInfo.part.23). Al-
though it takes up a small portion of entire functions (2,997 func-
tions or 0.38% in our dataset), suchmargins may lead an unfair preci-
sion and recall because it is difficult to say either side (i.e., counting
a non-continuous function as one or two) is inaccurate from a re-
versing perspective for binary analysis. In a similar vein, going back
to Listing 5, the decision that those branch functions have been rea-
sonable in terms of function boundary correctness is questionable.
Interestingly, the register rbx at lines 36 and 37 holds a p_sess
value instead of a base pointer to invoke the corresponding call. It
means missing the boundary of the seemingly inlined (albeit sepa-
rated) function does not hamper conducting further reversing in
case that such a missing function (cmd_process_pasv_cleanup)
is both semantically and tightly coupled with its caller.

Ground Truth from Debugging Information. It is very com-
mon to extract a ground truth of a function boundary from de-
bugging information in a non-stripped binary because debugging
sections contain function positions and sizes in a DWARF struc-
ture. However, such a structure can be found even in a stripped
binary, that is, an ._eh_frame section. It follows a DWARF format
by default, storing call frame information (CFI) for an exception
handling routine4. The CFI contains two entry forms: i) a common
information entry (CIE) that corresponds to a single object and
ii) a frame description entry (FDE) that contains a reference to a
function and its length.

1 ; __int64 __fastcall atol_317(const char *__nptr)
2 0x9C0A20 xor esi, esi
3 0x9C0A22 mov edx, 0Ah
4 0x9C0A27 jmp _strtol

Listing 4: Example of an identified function by Ghidra using
FDE information where a symbol table does not hold.

Ghidra, one of the state-of-the-art disassemblers, harnesses such
FDEs to identify a function, sometimes resulting in discovering
more functions that may not reside in a symbol table alone5.
To exemplify, Listing 4 demonstrates a short function from
cpugcc_r-amd64-clang-O1 that has been detected by Ghidra
with FDE information where a ground truth (i.e., function symbol)

3The symbol name ending with “.part.{num}” has been generated by gcc. It is a
compiler-specific behavior because clang (i.e., imagick_r-amd64-clang-O3) holds
a single function symbol.
4The ._eh_frame section supports exceptions in C++, but System V ABI for
AMD64 [17] mandates to have the section in a stripped binary (even written in C code)
by convention.
5The GNU binutils such as objdump or nm reads function symbols from a symbol
table (.symtab and .dynsym) by default rather than parsing entire debugging sections.

6



does not hold. We discovered that there are 13, 380 such functions in
the above binary, which significantly increases the number of false
positives for Ghidra and Nucleus. Although the function symbols
are absent in a debugging section, those functions are indeed true
positives. Under the current scheme of precision and recall, the F1
value of both Ghidra and Nucleus (96.0 and 90.4 in Table 8) may
be distorted because the function in Listing 4 should be viewed as
an actual binary function. Considering the functions that can be
found in FDEs, the recalculated F1 of Ghidra and Nucleus would
be 98.0 and 93.0, respectively, whereas that of IDA Pro drops (91.3
from 93.4), which would impact on the final ranking.

4.5 On the Effectiveness of ML Techniques
This section describes the effectiveness of ML-centric approaches
including deep learning with several case studies.

1 static void
2 process_post_login_req(struct vsf_session* p_sess) {
3 char cmd;
4 /* Blocks */
5 cmd = priv_sock_get_cmd(p_sess->parent_fd);
6 if (tunable_chown_uploads && cmd == PRIV_SOCK_CHOWN)
7 cmd_process_chown(p_sess);
8 ...
9 else if (cmd == PRIV_SOCK_PASV_CLEANUP)
10 cmd_process_pasv_cleanup(p_sess);
11 ...
12 else
13 die("bad request in process_post_login_req");
14 }
15
16 ; Beginning of process_post_login_req()
17 0xAC10 push rbx
18 0xAC11 mov rbx, p_sess
19 0xAC14 mov edi, [p_sess+180h] ; fd
20 0xAC1A call priv_sock_get_cmd
21 ...
22 0xAC3F lea rcx, jpt_AC4D
23 0xAC46 movsxd rax, ds:(jpt_AC4D - 16C38h)[rcx+rax*4]
24 0xAC4A add rax, rcx
25 0xAC4D jmp rax ; jump table
26 0xAC52 pop p_sess
27 0xAC53 jmp cmd_process_get_data_sock
28 0xAC55 lea rdi, aBadRequestInPr
29 0xAC5C pop p_sess
30 0xAC5D jmp die
31 ...
32 0xAC80 pop p_sess
33 0xAC81 jmp cmd_process_pasv_cleanup
34
35 static void
36 cmd_process_pasv_cleanup(struct vsf_session* p_sess)
37 {
38 vsf_privop_pasv_cleanup(p_sess);
39 priv_sock_send_result(p_sess->parent_fd ,

PRIV_SOCK_RESULT_OK);
40 }
41
42 ; Beginning of cmd_process_pasv_cleanup()
43 0xAD30 push rbx
44 0xAD31 mov rbx, p_sess
45 0xAD34 call vsf_privop_pasv_cleanup
46 0xAD39 mov edi, [p_sess+180h]
47 0xAD3F mov esi, 1
48 0xAD44 pop p_sess
49 0xAD45 jmp priv_sock_send_result

Listing 5: Example of a function and its disassembly after
optimization. The cmd_process_pasv_cleanup() function
has been discovered by an RNN alone over rule-based
approaches.

Discovering True Functions. Shin’s RNN [24] is one of early
works that takes advantage of recurrent neural networks (RNN) in
binary analysis, proposing a bi-directional model with RNN hidden
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Figure 1: Comparison of the number of true functions be-
tween different tools (i.e., RNN VS rule-based approaches).
The capability of discovering a function start is comparable
with each other.

Table 3: Non-returning function detection rate across dif-
ferent tools. Rule-based approaches with heuristics demon-
strate better performance than ML-oriented tools.

Tool # of Missing Total Rate
IDA Pro 0 9,409 0.00%
Ghidra 54 9,409 0.57%
Nucleus 1,186 9,409 12.60%
ByteWeight 4,615 9,409 49.05%
ByteWeight* 2,024 5,125 39.49%
Shin:RNN 24 250 9.60%

units. We investigate that the proposed model indeed outperforms
rule-based techniques and heuristics adopted by popular reversing
tools like IDA Pro [16] and Ghidra [9]. Figure 1 illustrates a simple
comparison between the number of true functions discovered by
each approach for the utilities in Table 6. According to our experi-
ment, the Shin’s RNN model discovered 8, 380 and 1, 871 functions
more than Ghidra and IDA, respectively (See Table 8 in detail).
Meanwhile, Ghidra and IDA discovered 9, 453 and 10, 499 functions
over the RNN. Interestingly, the RNN approach accurately found
696 unique functions that both Ghidra and IDA were missing. Al-
though a deep learning approach demonstrates its own strength,
however, it is difficult to conclude that an ML-oriented technique
surpasses rule-based ones.

Functions Discovered Solely by RNN. We further look into all
696 cases that the RNN model [24] could identify whereas rule-
based techniques missed. Note that the behavior of the model lacks
interpretability. Notably, 623 (90.5%) cases are from openssl bina-
ries that quite a few hand-written assembly functions are included.
Indeed, the prologue of those functions has deviated from known
function signatures (e.g., starting with shr or movdqu). We presume
that RNN deduces a hidden rule from manually written assembly
functions during a learning process. 160 (23.0%) cases have relatively
small functions in size (i.e., less than five instructions). Classifying
with the starting instructions of missing functions by both rule-
based tools, 299 cases begin with a mov instruction, followed by
push (235), jmp (58), lea (39), test (27), and cmp (17).

Non-returning Functions. We also investigate a common struc-
ture that often complicates the decision of a function boundary (List-
ing 1 is one of good examples), that is, a non-returning function 6.
6 We follow a particular flag (FUNC_NORET) that IDA Pro maintains for the analysis
purpose.
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Table 4: Function names (signatures) from Ghidra that do
not return for ELF and PE format.

ELF (Executable and Linkable Format) PE (Portable Executable)
exit abort
cexit CxxThrowException
c_exit CxxThrowException@8
abort CxxFrameHandler3
reboot crtExitProcess
longjmp ExitProcess
longjmp_chk ExitThread
siglongjmp exit
panic FreeLibraryAndExitThread
stack_chk_fail invalid_parameter_noinfo_noreturn
cxa_throw invoke_watson
cxa_terminate longjmp
cxa_call_unexpected quick_exit
cxa_bad_cast RpcRaiseException
Unwind_Resume terminate
assert_fail
assert_rtn
fortify_fail
ZSt9terminatev
ZN10__cxxabiv111__terminateEPFvvE
pthread_exit

We could collect 9, 409 cases (1.2%) in total that end with call,
jump, or __exit such as Listing 5, Listing 3, and Listing 4 from
our dateset. Table 3 concisely shows that ML-oriented approaches
miss more functions than rule-based techniques. Interestingly, IDA
Pro fully recognizes non-returning functions whereas the original
ByteWeight model has the largest missing rate (i.e., almost half).
Likewise, Ghidra (open source) deterministically defines a set of
function names [1] that do not return as in Table 4.

Inlined Functions. We look into one of the examples in which the
RNN approach has accurately captured all function starts, whereas
both IDA Pro and Ghidra have failed to discover them (696 functions
in Figure 1). Listing 5 illustrates the source code snippet (Line 1-14,
Line 35-40) and its disassembly from vsftpd-amd64-clang-O1.
This function takes a single argument (i.e., p_sess), which plays
a role in branching out into multiple call invocations depending
on the argument (i.e., Line 7, 10, or 13 otherwise). Although this
example is slightly different from a typical function inlining case
in that a function symbol resides in a symbol table, rule-based
binary analysis tools regard each branch function as part of the
process_post_login_req() function.

4.6 Faithfulness of Tools
We conduct a comparison of three function identification results
with IDA Pro [16], Ghidra [9], and Shin’s RNN [24] on yes, bun-
dled in GNU Coreutils [12], which simply prints out a string until
interrupted. The final executable contains 98 user-defined func-
tions from 16 objects (i.e., compilation units) in total (excluding
linker-inserted functions such as _start) when compiled with the
optimization level of -O1 albeit its simple functionality. This is be-
cause even a single use of a function consolidates all other functions
within the object that the function belongs to (or a static library) at
link time, which may result in the presence of many unreachable
functions in an executable binary.

Case Study: Under Reporting (IDA Pro). Table 5 summarizes a
list of functions that at least one tool was unable to identify; e.g., the
hard_locale function (at the bottom) with -O1 was not discovered
by the RNN tool. A dash line means that a certain function is absent
in the binary mostly due to function inlining at a high optimization

Table 5: Comparison of function identification results with
IDA Pro (I), Ghidra (G), and Shin’s RNN (R) tools. The capital
letters represent that each tool could discover the beginning
of a functionwhereas lower letters (i.e., i, g, r) represent a cer-
tain tool could not. IDA Pro purposefully does not identify
unreachable (or unused) functions after constructing a con-
trol flow. Note that a dash means a function is not shown in
a binary (e.g., function inlining).

Function Name -O1 -O2 -O3
emit_ancillary_info IGR — IGR
close_stdout_set_file_name iGR iGr iGr
close_stdout_set_ignore_EPIPE iGr iGr iGr
get_quoting_style iGR iGR iGR
set_quoting_style iGR iGR iGR
set_char_quoting IGR iGr iGR
set_quoting_flags iGR iGR iGR
set_custom_quoting IGR iGR iGR
quotearg_alloc iGR IGR IGR
quotearg_free iGR iGR iGR
quotearg_n iGR iGR iGR
quotearg_n_options iGR IGR IGR
quotearg_n_mem IGR iGR iGR
quotearg iGr iGR iGR
quotearg_mem iGR iGR iGR
quotearg_n_style IGR IGR IGr
quotearg_style_mem iGR IGR IGR
quotearg_char_mem iGR IGR IGR
quotearg_colon_mem iGR IGR IGR
quotearg_n_custom iGR IGR IGR
quotearg_custom iGR IGR IGR
quotearg_custom_mem iGR IGr IGR
quote_n_mem iGR iGR iGR
quote_mem iGR iGR iGR
quote_n iGR iGR iGR
quote iGR iGR iGR
version_etc_ar iGR iGR iGR
emit_bug_reporting_address iGR iGR iGR
xnmalloc iGR IGR IGR
xnrealloc iGR IGR IGR
xrealloc iGR IGR IGR
x2realloc iGR IGr IGR
xcalloc iGR iGR iGR
xstrdup IGR iGR IGR
rpl_calloc IGr IGr IGr
c_isalnum iGR — —
c_isalpha iGR — —
c_isascii iGR — —
c_isblank iGR — —
c_iscntrl iGR — —
c_isdigit iGr — —
c_isgraph iGR — —
c_islower iGR — —
c_isprint iGR — —
c_ispunct iGR — —
c_isspace iGR — —
c_isupper IGR — —
c_isxdigit iGR — —
c_tolower iGR — —
c_toupper iGR — —
hard_locale IGr IGR IGR

level; e.g., emit_ancillary_info has been inlined (merged) to
another function with -O2. Indeed, quite a few functions with the
prefixes of quotearg_ and c_ have not been identified by IDA Pro.
In this example, IDA Pro misses around half of the whole functions
because it seeks functions with a recursive traversal 7. This aligns
with the results from Andriesse et al. [3] that disassembly tools

7IDA Pro marks unused or unreachable functions in a maroon color.
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based on a control flow graph show relatively a lower accuracy
than those with a linear sweep. Reporting reachable functions alone
is orthogonal to the capability of recognizing functions because it
is a matter of a strategic or idiosyncratic choice to help reversing.

1 ; Actual function starts
2 0x286901 PUSH RBP
3 0x286902 MOV RBP,RSP
4 0x286905 MOV qword ptr [RBP + local_20],RDI
5 0x286909 MOV RAX,qword ptr [RBP + local_20]
6 ...
7 0x286971 ADD RAX,RDX
8 0x286974 SHL RAX,0x2
9 0x286978 ADD RAX,RDX
10 0x28697b XOR RAX,qword ptr [RBP + local_10]
11 0x28697f POP RBP
12
13 ; Incorrect function identification: XREF 0x3d0500(*)
14 0x286980 c3 RET
15 ; Actual function ends
16
17 ; Frame Descriptor Entry
18 0x3d04f8 ddw 14h (FDE) Length
19 0x3d04fc ddw cie_003cfc68 (FDE) CIE Reference

Pointer
20 0x3d0500 ddw FUN_00286980 (FDE) PcBegin
21 0x3d0504 dq 160h (FDE) PcRange
22 0x3d050c uleb128 0h (FDE) Augmentation

DataLen

Listing 6: Example of an erroneous function identification
case with an FDE by Ghidra.

Case Study: Over Reporting (Ghida). As described in §4.4,
Ghidra utilizes FDE information to explore more functions. How-
ever, it is worthwhile mentioning that FDE references may not
always point to correct function locations. Listing 6 shows the case
of a Ghidra’s false positive with a frame descriptor entry that points
to a location in the middle of a single instruction. This example
comes from the libcrypto.so-gcc-O0 binary, compiled with gcc
and -O0 option. We do not confirm all individual cases, but there
are a number of such cases that FDEs complicate the beginning of
a function. Ghidra indeed tends to discover a little more functions
than the number of ground truth. The behavior of under/over re-
porting well explains the reason why IDA Pro exhibits a (relatively)
high precision and a low recall while Ghidra shows the opposite
(Table 8).

5 EVALUATION
In this section, we revisit prior work with our dataset. The experi-
ment has been done with a 64-bit Ubuntu 16.04 system equipped
with Intel(R) Xeon(R) E5-2658 v3 CPU (with 16 2.20 GHz cores) and
64 GB RAM.

Corpus. We have collected 16 different binaries from the SPEC2017
benchmark [26] and four binaries from three utilities of our choice,
and then generated 152 different x64 ELF binaries in total with
two compilers (gcc 5.4 and clang 6.0.1) and four different opti-
mization levels (O0-O3), excluding a clang version of blender_r
and parest_r because of compilation errors (Table 6). It is worth
noting that our dataset is valid after normalization because only
753 NFs (less than 1%) in a test set (80.5K) are shown in a train set
(796.1K).

Results of Function Identification Tools. As shown in Table 7,
we utilize three rule-based tools (i.e., IDA Pro 7.1, Ghidra 9.1.2,
and Nucleus 0.65) and two ML-embedded tools (i.e., ByteWeight

Table 6: Summary of our test suite. The numbers in a paren-
thesis represent the number of binaries with a different set
of compilers (gcc and clang) and optimization levels (-O[0-
3]).

TestSuite Count Binary Set

SPEC2017 16 (120)

500.perlbench_r, 502.gcc_r, 505.mcf_r,
520.omnetpp_r, 523.xalancbmk_r, 525.x264_r,
531.deepsjeng_r, 541.leela_r, 557.xz_r,
508.namd_r, 510.parest_r,
511.povray_r, 519.lbm_r, 526.blender_r,
538.imagick_r, and 544.nab_r

Utilities 4 (32) nginx 1.16.1, vsftpd 3.0.3, and
openssl 1.1.1f (libssl.so, libcrypto.so)

Table 7: Corpus for evaluating cutting-edge function detec-
tion tools. Train sets are merely for machine learning tech-
niques. (*) represents the retrained model of ByteWeight.

Tool Train set Test set

Byteweight GNU utils SPEC2017, Our utilities
Byteweight* SPEC2017 SPEC2017 (10-fold), Our utilities
Shin:RNN SPEC2017 Our utilities
IDA Pro 7.2 N/A SPEC2017, Our utilities
Ghidra 9.1.2 N/A SPEC2017, Our utilities
Nucleus N/A SPEC2017, Our utilities

and LEMNA implementation for Shin et al’s RNN) for recognizing
function starts. Table 8 summarizes our empirical results with our
own dataset as selected in Table 6. Even though we question the
reasonableness of the current metrics in Section 4.4, we have used
the same metrics for direct comparison with prior evaluations.

First, we have applied the publicly available model (the latest
version as of writing) from ByteWeight [8] to our corpus. The
F1 value with the released model is around 61.7. Our evaluation
merely includes the binaries compiled with gcc because testing the
binaries with clang is unfair that the existing model would have
not learned any signature from that compiler. It indicates that GNU
utilities do not offer diverse cases due to a considerable number of
redundant NFs as discussed in Section 4.2. Next, we have retrained
ByteWeight [5] (taking a week or so) using SPEC2017 and retested
it with our dataset (both compiled with gcc alone). Note that three
binaries of our test set have been crashed while processing, and
thus are excluded. All metrics have considerably increased after
retraining (78.0 on average); however, the F1 values of the newly
trained model across optimized binaries (O1-3) still remain below 70
(ByteWeight* in Table 8). We employ 10-fold cross validation for the
model. Besides, we have adopted LEMNA’s re-implementation [14]
and the hyperparameters for the Shin’s RNN model because the
source code of original work is currently unavailable. With the test
set of our chosen utilities (32 binaries or 80.5K functions) and the
training set of SPEC2017, the RNN model achieves an F1 of 90.1.

Finally, we have run the whole set (152 binaries or 796.1K func-
tions in total) for rule-based tools including Ghidra [9], IDA Pro [16]
and Nucleus [4], and obtained F1 values of 96.0, 93.4, and 90.4, re-
spectively. Notably, IDA Pro demonstrates the highest precision
(99.55) that means a false positive rate is quite low whereas Ghidra
demonstrates the highest recall (98.65) that means a false negative
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Table 8: Experimental results of function starts using a
precision (P), recall (R), and F1 value from various tools.
GT represents a ground truth discovered in a symbol table.
ByteWeight* shows our empirical results after retraining
with SPEC2017.

Tool GT TP FP FN P R F1
ByteWeight 514,082 309,781 180,777 204,301 63.15 60.26 61.67
gcc 514,082 309,781 180,777 204,301 63.15 60.26 61.67

O0 193,094 188,884 19,043 4,210 90.84 97.82 94.20
O1 108,964 56,655 55,463 52,309 50.53 51.99 51.25
O2 107,673 31,833 50,604 75,840 38.61 29.56 33.49
O3 104,351 32,409 55,667 71,942 36.80 31.06 33.68

ByteWeight* 463,323 332,576 56,655 130,747 85.44 71.78 78.02
gcc 463,323 332,576 56,655 130,747 85.44 71.78 78.02

O0 142,603 141,774 156 829 99.89 99.42 99.65
O1 108,964 68,599 19,607 40,365 77.77 62.96 69.58
O2 107,539 63,630 18,671 43,909 77.31 59.17 67.04
O3 104,217 58,573 18,221 45,644 76.27 56.20 64.72

Shin:RNN 80,532 69,334 4,034 11,198 94.50 86.09 90.10
clang 41,267 35,153 1,164 6,114 96.79 85.18 90.62

O0 11,647 11,476 52 171 99.55 98.53 99.04
O1 11,637 9,263 346 2,374 96.40 79.60 87.20
O2 8,998 7,194 357 1,804 95.27 79.95 86.94
O3 8,985 7,220 409 1,765 94.64 80.36 86.91

gcc 39,265 34,181 2,870 5,084 92.25 87.05 89.58
O0 11,657 11,477 90 180 99.22 98.46 98.84
O1 9,349 8,351 499 998 94.36 89.33 91.77
O2 9,305 7,304 1,137 2,001 86.53 78.50 82.32
O3 8,954 7,049 1,144 1,905 86.04 78.72 82.22

Ghidra 796,069 785,333 54,131 10,736 93.55 98.65 96.03
clang 281,987 276,296 47,134 5,691 85.43 97.98 91.27

O0 92,718 92,330 2,468 388 97.40 99.58 98.48
O1 92,226 90,282 15,006 1,944 85.75 97.89 91.42
O2 48,614 46,933 14,744 1,681 76.09 96.54 85.11
O3 48,429 46,751 14,916 1,678 75.81 96.54 84.93

gcc 514,082 509,037 6,997 5,045 98.64 99.02 98.83
O0 193,094 192,523 2,318 571 98.81 99.70 99.26
O1 108,964 107,683 1,663 1,281 98.48 98.82 98.65
O2 107,673 106,055 1,492 1,618 98.61 98.50 98.55
O3 104,351 102,776 1,524 1,575 98.54 98.49 98.51

IDA Pro 796,069 699,606 3,194 96,463 99.55 87.88 93.35
clang 281,987 263,385 3,102 18,602 98.84 93.40 96.04

O0 92,718 92,600 3 118 100.00 99.87 99.93
O1 92,226 84,920 1,044 7,306 98.79 92.08 95.31
O2 48,614 43,037 1,025 5,577 97.67 88.53 92.88
O3 48,429 42,828 1,030 5,601 97.65 88.43 92.81

gcc 514,082 436,221 92 77,861 99.98 84.85 91.80
O0 193,094 191,757 3 1,337 100.00 99.31 99.65
O1 108,964 89,288 10 19,676 99.99 81.94 90.07
O2 107,673 79,085 47 28,588 99.94 73.45 84.67
O3 104,351 76,091 32 28,260 99.96 72.92 84.32

Nucleus 796,069 750,012 112,936 46,057 86.91 94.21 90.42
clang 281,987 264,819 72,945 17,168 78.40 93.91 85.46

O0 92,718 91,872 8,810 846 91.25 99.09 95.01
O1 92,226 82,431 21,687 9,795 79.17 89.38 83.97
O2 48,614 45,346 21,191 3,268 68.15 93.28 78.76
O3 48,429 45,170 21,257 3,259 68.00 93.27 78.66

gcc 514,082 485,193 39,991 28,889 92.39 94.38 93.37
O0 193,094 188,789 8,610 4,305 95.64 97.77 96.69
O1 108,964 104,985 7,330 3,979 93.47 96.35 94.89
O2 107,673 95,897 11,481 11,776 89.31 89.06 89.19
O3 104,351 95,522 12,570 8,829 88.37 91.54 89.93

rate is quite low. One plausible reason is that the way of detecting
functions is different: IDA Pro tends to identify functions based
on control flow graphs whereas Ghida attempts to detect as many
functions as possible even with FDEs (Section 4.6). Similarly, part of
the reason that IDA Pro has relatively a low recall is because it does
not report unreachable (either unused or indirectly reachable) code.
Another interesting finding is that IDA Pro reports a higher F1 of
96.0 for clang-generated binaries than that of 91.3 from Ghidra,
however, Ghidra shows a better performance (98.9) than IDA Pro
(91.8) for gcc-generated binaries.

Insights of Empirical Results. Taking a close look at the exper-
imental results with our efforts to answer the research questions
we have raised in Section 4.1, the following recaps our insights.

First, in general, state-of-the-art function detection tools work
very well to which no optimization has been applied. This means
a compiler toolchain emits an apparent signature like function
prologues and epilogues. Second, not a single tool dominates all the
others. The performance of a rule-based tool may vary depending
on a signature database. It also indicates that the performance of the
same tool may fluctuate according to its own version or dataset to
be tested. Third, it is difficult to claim that an ML-centric approach
is yet superior to rule-based approaches although the approach
obviously has its own strength. Our empirical results show that both
rule-based and ML-oriented approaches complement each other.
For example, a deep learning technique could play a pivotal role
in learning locally missing functions. Fourth, the current metrics
(i.e., precision, recall, and F1 value) for function detection may
not be reasonable because it is likely that they may not reflect
idiosyncrasies of detection tools or various compiler optimization
techniques. Fifth, the capability of identifying functions depends
on each tool’s strategic or peculiar choice. Overall, it is difficult
to conclude that i) a function detection problem has been fully
resolved, and ii) a better metric may be needed, which we leave for
our future research.

6 DISCUSSION AND LIMITATIONS
This section discusses suggestions, future research and limitations.

Representativeness of Corpus. It is non-trivial to choose a suffi-
cient number of binaries with a variety of different cases due to the
nature of software diversity. To this regard, we carefully selected
our test suite of SPEC2017 [26] that encompasses varying appli-
cation area (e.g., interpreter, compiler, benchmark, compression,
converter, and AI-centered searching algorithms), programming
languages (e.g., C, C++), and sizes (e.g., ranging from 3 to 1, 304
KLOC). We merely include rate_int suites [20] (ending with _r)
because speed_int suites (ending with _s) consist of many du-
plicate functions to avoid distorting the results for our purpose.
We also embody popular Web/FTP servers, and a cryptographic
library with a manually-written assembly in our corpus. Although
the number of binaries in our corpus is 152, the number of func-
tions is 796K in our dataset, which is 80% larger than that of whole
functions (446K) in GNU utilities [5]. However, it is possible that
our investigation may have undiscovered cases, missing insights,
or even biased results.

Functions in a Virtual Table. A binary written in an object-
oriented language such as C++ typically contains a number of vir-
tual tables, each of which consists of a group of function pointers.
A class inheritance forms a hierarchical structure (i.e., super/par-
ent class, sub/child class). Under this setting, by nature, different
functions from separate virtual tables8 may point to the same refer-
ence (or code region) because the implementation must be identical.
Hence, it is common that a single function code can correspond to
multiple function names (1 : n mapping). We may need a policy
to handle such cases; say, what if a tool can identify F1 but not F2
where the two functions share the same code region?

8C++ employs function name mangling so that a linker can separate common name in
a different name space.
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Future Research Directions. We suggest several research direc-
tions in the field of function identification. First, seeking a represen-
tative binary corpus is necessary. The official corpus should cover
varying code constructs and corner cases, which consists of a set
of binaries compiled with different compilers (and versions if pos-
sible) and optimization levels, which must be thoroughly studied
beforehand (e.g., number of redundant functions, non-returning
functions, non-continuous functions, known ground truth based
on debugging information). Second, defining an elaborate metric is
required rather than the current scheme that an F1 value dominates
alone. For example, we can conceive a sub-metric to measure the
discovery of non-returning functions, unreachable functions, or
overlapping functions that point to the same code region. The addi-
tional metrics would better explain the strengths and weaknesses of
each tool. Third, developing a hybrid model of both rule-based and
ML-oriented approaches seems a promising direction for function
detection because our experimental results glimpse a complemen-
tary relationship between the two. As shown in §5, an RNN was
capable of successfully finding uncommon rules for the beginning
of a function from manually written assembly files.

7 CONCLUSION
In this paper, we rethink a function identification problem. with
the existing rule-based and ML-centric approaches. Notable results
with high F1 values from prior works seemingly convey the im-
pression that identifying functions in a stripped binary has been
(almost) addressed. To this end, we attempt to fill the void of what
may have been overlooked by taking a close look at prior datasets,
evaluations, common metrics, and the behavior of a tool. With
varying case studies, our major findings support the followings:
i) a common dataset for function detection study, GNU Utilities,
is not appropriate to showcase the effectiveness of a tool, ii) it is
difficult to say that ML-oriented approaches surpass rule-based
ones, and iii) the capability of function recognition requires the
understanding of a tool’s behavior. We conclude that, based on
complex binaries in the wild, the field of function recognition has a
room for improvement such as better metrics and dataset for fair
comparison. Moreover, we believe that machine learning plays an
important role for what rule-based approaches (i.e., signature based
techniques) cannot cover.
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