
Hunting Mac OS X rootkit with Memory Forensics

Kyeongsik Lee1, Jinkook Kim2, Hyungjoon Koo2

1Defense Cyber Warfare Technology Center, Agency for Defense Development, Sonpa P.O Box 132, Seoul, Republic of Korea
2Center for Information Security Technologies (CIST), Korea University, Anam-Dong, Seongbuk-Gu, Seoul, Republic of Korea

Abstract

The anti-virus product for Mac OS X has emerged recently, reflecting its growing popularity. While cyber

warfare among countries has focused on Windows operating system so far, modern APT also aims at Mac OS X. In

the case of Tibet attack and Flashback, Mac OS becomes no longer safe zone. Most elaborate exploits have started

taking advantage of common vulnerabilities available on cross-platform. The rootkit for Mac OS X called rubilyn

has been found lately, whose open source enables newbie hackers to create other variations with ease. Suppose that

clever rootkit would successfully penetrate into end users. Then it could perform a variety of malicious activities

without any suspicious event recognition and even incapacitate anti-virus solution for Mac. Some vendors have

already combined their engines with memory forensic technique for Windows platform, which allows them to

discover unpacked malware and/or rootkits by looking into memory investigation. This advanced technique

improves detection rates of malware to make an attempt to bypass known signatures. The research on memory

forensics for Mac OS X has been conducted over the last couple of years. This paper covers characteristics of a

prevalent Mac malware and diverse analysis techniques based on the ongoing project, volafox, including general

system information view, hidden process detection, hidden KEXT detection, System Call Table and Mach Trap

Table hooking detection and so forth. Furthermore, we present efficient rootkit detection method using memory

forensic techniques for Mac, getting over anti-virus bypass.

Keywords: Mac OS X, Memory Forensics, volafox project, Rootkit Detection.

1. Introduction

While malware authors mainly targeted Microsoft Windows family, lately they have widened into diverse OS

targets including Mac OS X. A good example of APT (Advanced Persistent Threat) would be Tibet attack, which

aimed at Mac OS X. This means Mac OS X is not safe zone any more. [1]

Malware at the early stage of Mac OS X did not have built-in exploits and/or rootkits. It used simple technique

that disguised oneself as legitimate application or file. However, modern Mac malware often installs rootkits and

then makes an attempt to hide a specific process, to tamper a process ownership, to capture key strokes, and to

control audio devices and so forth. These rootkits has a device driver, called KEXT or Kernel Extension.

In particular, rubilyn rootkit publicly released its source code in 2012, which supports built-in rootkit features. [2]

This allows a script kiddie to create his/her own rootkit variants by simple modification of known source. However,

current anti-virus solutions for Mac depend largely on signature-based detection. Thus they have limitations to

detect customized rootkits because they often manipulate kernel memory and pass wrong outputs to applications.

One of most effective method to detect rootkits is memory forensics technique, which allows investigators to

analyze logical memory structure and to extract forensically meaningful data. This technique helps incident handling

because physical memory is the only place to be unlikely to conceal malware itself.

This paper presents useful techniques with Mac OS X memory forensics, especially with regard to the

1Corresponding author. Fax: +82 2 403 3512 (15826).

E-mail addresses: rapfer@gmail.com (KS, Lee).
2E-mail addresses: proneer@gmail.com(JK. Kim), kevinkoo001@gmail.com (HJ. Koo)

concealment and detection technique of rootkits.

2. Methods for Mac OS X Memory Analysis

There are three steps for Mac memory analysis: extracting symbol address within kernel image, finding kernel

base address considered KASLR and extracting useful artifacts in memory. This section illustrates each phase in

sequence.

2.1. Extracting Symbol Address within Kernel Image

The first step of Mac memory analysis is to obtain virtual address from kernel symbols. The file mach_kernel,

Mac OS X kernel image, follows Universal Binaries file format to support multiple platforms in Mac OS X Lion or

earlier. On the other hand, the kernel in Mac OS Mountain Lion or later follows Mach-O file format, which only

supports 64 bits.

Figure 1. Universal Binaries & Mach-O File Format [3]

Note that it is essential to identify running CPU architecture and corresponding symbol tables because each

Mach-O file has its own kernel symbols. Based upon Universal Binaries and Mach-O file format from Apple official

documents, it is able to extract symbol information. As Figure 1 shows, the location and the size of symbol tables

can be found with LC_SYMTAB from Load Command. Using obtained table information, symbol name and virtual

address of each symbol can be extracted, which helps the data structure analysis in memory.

2.2. Finding Kernel Base Address considered KASLR

Until Mac OS X Lion or earlier, the loaded kernel page table, IdlePDPT for 32 bit kernel or IdlePML4 for 64 bit

kernel, allowed page table configuration and memory analysis because symbol address directly maps to physical

address. However, Apple has hardened the mechanism applying KASLR technique (known as Kernel Address

Space Layout Randomization) in Mac OS X Mountain Lion or later so that it could make rootkits difficult to predict

the address of significant objects for operating system. [4] This also indicates that previous memory analysis tools

for Mac might be problematic for appropriate data interpretation due to the starting address alteration of the page

table. To resolve this matter, entire symbol addresses need the adjustment by looking for kernel base address and

adding it into each symbol address. One of the Mac OS X memory analysis tools, volafox, identifies kernel base

address as following:

(1) Find _lowGlo, one of kernel symbols. The _lowGlo is the virtual address of lowvector structure whose

signature is ‘Catfish ’. Note that the last character of the signature has a single space.

(2) Search for ‘Catfish ‘ from the page block in physical memory until the string is found.

(3) Calculate the difference by subtracting the address found ‘Catfish ‘ signature from _lowGlo kernel

symbol address, which eventually discover kernel base address. Note that kernel symbol address should

be converted into 32 bits because Mac OS Mountain Lion or higher represents all virtual addresses in 64

bits only. It can be obtained simply by taking the remainder to divide the 64 bits value by 0xFFFFFF80.

After kernel base address is found, the physical address of page table can be identified as following steps:

(1) Configure the page table in BootPML4 symbol address.

(2) Find the physical address with the page table at the first step using the value adding IdlePML4 to kernel

base address above.

(3) Find the address of kernel page table by reading 8 bytes in the physical address at the second step.

Once page table address is identified, we move on extracting artifacts in memory.

2.3. Extracting Useful Artifacts in Memory

Once page table and kernel base address are identified, it is ready for kernel structure analysis. The information

which kernel symbols point to can be accessible with physical address, using page table by adding symbol virtual

address extracted from kernel image to kernel base address. For instance, the following phase shows how to obtain

machine_info structure.

(1) The symbol address of machine_info can be found in kernel symbol list.

(2) In case of OS X Mountain Lion, symbol address should be adjusted by adding altered kernel base

address due to KASLR.

(3) Using page table from section 2.2, it allows virtual address to convert into physical address.

(4) The information can be interpreted from physical address in a proper manner according to machine_info

structure.

3. Rootkit Technique and Detection

To begin with, Mac OS X rootkits are highly likely to take advantage of techniques based on *Nix rootkit.

However, their techniques are getting more complicated and elaborated. This section covers how to detect Mac

rootkit along with its features.

3.1. Process Hiding with DKOM

Process hiding technique is one of fundamental features which general rootkit has implemented. This feature

helps to make an attempt to conceal a particular process with various techniques. In this section, we focus on process

object manipulation, which is well known for DKOM or Direct Kernel Object Manipulation.

Mac OS X has two major components: Mach, BSD. Each component has its own role to manage process as

following: [5]

 Mach: virtual memory management

 BSD: process ownership and process management

In order to hide rootkit process itself, it performs either manipulation of doubly linked list in proc structure or

removal of proc structure pointer address for particular process in hash table. If the process information in proc

structure is tampered, it is no longer identifiable from ps or top command to list current processes.

Figure 2. Process Hiding with DKOM (Direct Kernel Object Manipulation)

Figure 2 illustrates that general system commands would not show a hidden process because the process structure

pointer has been manipulated by unlinking back and forth. As you might imagine, the hidden process with the

pointer alteration is running without any trouble for sure. In this case, it is necessary to have another detection

technique.

At first, manipulated kernel object can be identifiable with other structure information related to process structure.

Mac OS X process management has divided into two parts in aforementioned components: process management and

virtual memory management. The task structure in Mach components maintains one-to-one mapping with proc

structure and each connects to virtual memory management structure in Figure 3. In other words, hidden process

can be revealed if task structure tracks down proc structure in reverse.

Figure 3. Discovering hidden process with task structure

Memory analysis tool makes it possible to extract all proc structures with the bsd_info pointer pointing to proc

structure, by tracing task structure in kernel symbol. Compared to the result from proc structure trace, we end up

with discovering a hidden process.

The other way is to use hash table in proc structure. Hash table is designed to allow applications to acquire

process information quickly, thus it contains the pointer of each structure. With this table, it is feasible to detect

hidden rootkit with doubly linked list manipulation. Note that this technique might be less useful than the detection

using task structure because a hidden process can be normally running after the pointer in hash table has been

eliminated. [6]

3.2. KEXT Hiding with DKOM

Mac OS X provides developers with I/O Kit Framework which allows them to add modules in need at XNU

kernel. [7] The kernel module working on I/O Kit is called KEXT or Kernel Extensions. KEXT has the privilege to

directly get access to kernel memory space. Hence it should be loaded with root privilege. With KEXT, private

methods identified through reverse engineering can be used as well as exported methods in kernel. Common rootkit

developers often make use of KEXT file to handle kernel memory in handy. Most forensic investigators attempt to

detect rootkit with suspicious KEXT identification using kextstat, one of Apple system commands.

Rootkit developers employ two hiding techniques from the detection above. One is to return the manipulated

outcome of kextstat to users by hooking system call. With hooking the write_nocancel function of system calls, a

printed message in terminal could be easily forged. The other is to fabricate kernel object information in order to

conceal rootkit KEXT. [8] By KEXT structure manipulation, rootkit writers successfully hide particular rootkit

KEXT from Apple system commands. However, this technique is not in use any more since it causes kernel panic in

Mac OS X Snow Leopard or later. Nonetheless, it is obvious that rootkit authors keep making an effort to

manipulate command results.

Figure 4. KEXT hiding technique and hidden KEXT discovery

Figure 4 demonstrates one of the best ways based upon specific pattern to discover hidden KEXT. The pattern is

defined as characteristics which each field in KEXT structure contains. Then KEXT search has to be exhaustively

performed within the memory space of which the structure has been loaded. If any pattern corresponding to pre-

defined feature is discovered while searching process, put it on the rootkit candidate list for further examination.

This kind of data extraction is called carving technique. Table 1 shows KEXT search patterns in 64 bit kernel.

Table 1. KEXT Search Patterns in Virtual Address Area (from 0xffffff7f00000000 to 0xffffff8100000000)

Field Pattern Size (Bytes)

INFO 1 4

KID 0xFFFF0000 below 4

Reference List 0xffffff7f00000000 ~ 0xffffff8100000000 8

Base Address 0xffffff7f00000000 ~ 0xffffff8100000000 8

Start Function Pointer 0xffffff7f00000000 ~ 0xffffff8100000000 8

Stop Function Pointer 0xffffff7f00000000 ~ 0xffffff8100000000 8

KEXT name String(ASCII) 64

Version String(ASCII) 64

When scanning physical memory address with a series of patterns within unique KEXT field, it is possible to

extract all hidden KEXT structures whatever technique has been employed in practice. Keep in mind that you need

to verify the loaded KEXT list because this technique draws the unloaded ones as well.

3.3. Network Session Hiding

The BSD component of XNU kernel in Mac OS X is responsible for network session management. The

commands for network query such as netstat get access to session information with inpcbinfo structure. Mac creates

inpcb structure and connects it to each other whenever a new network session is made.

Rootkit authors are able to hide network sessions if they could alter inpcb structure. The hiding technique is the

same with process one by doubly linked list manipulation. Once forged, system network commands are unable to

expose manipulated objects. If this network hiding technique is combined with aforesaid process hiding over attack,

then system administrator have no choice but to be exploited without any perception.

It is available to use hash table against network session hiding. The BSD component holds hash table in inpcbinfo

structure in order to access to inpcb structure with better efficiency. For example, general web service would create

a large number of network sessions, which generates high overhead to collect all network information from doubly

linked inpcb. Therefore, deploying hash table allows to avoid overhead and to collect the information with pointers

for each inpcb structure. (Figure 5) This technique helps to discover hiding network sessions. Moreover, if an

attacker tries to remove network information in the table on purpose, network session would be no longer valid. This

is different part from process hiding which hash table does not influence on.

Figure 5. Hidden Network Sessions Discovery

3.4. System Call Table / Mach Trap Table Hooking

Likewise other Unix system, Mac OS uses a function table, which allows applications to access kernel resources.

As already mentioned, Mac OS consists of Mach and BSD components and each component provides function table

for kernel system resource access. The table in BSD components is called System Call Table, whereas the one in

Mach components is called Mach Trap Table. Of the two, System Call Table manipulation is system call hooking.

There are two techniques for function hooking: one is to manipulate system call (Figure 6) and the other is to

manipulate function code directly. Since the former offers more convenient and safer way to implement than the

latter, all known rootkits have adapted the former technique so far.

Figure 6. System Call Table Hooking

If predefined number for system call is negative, Mach Trap Handler is executed instead of BSD system call.

Mach Trap Table could be forged by function pointer and/or code manipulation. However the case that rootkit

directly forges Mach Trap Table has yet to be reported because most functions in Mach Trap Table control Mach

Components structure as well as most system commands for management acquire information from BSD structure.

The method to detect table hooking can be narrowed down to the two: comparing System Call Table with Kernel

Symbol List in kernel image and using KEXT information.

The first method is to compare the calls in System Call Table and the ones in Kernel Symbol List. (Figure 7) It is

possible to check if there is any system call manipulation because System Call Table and Mach Trap Table are

loaded into virtual address within symbol information. This technique verifies entire calls in System Call Table and

handlers in Mach Trap Table because both tables hold virtual address stored Kernel Symbol List unless those are

manipulated. Make sure that Mac memory analysis tool contains its own symbol information for each kernel version

since the information might be wrong in case of being corrupted in kernel. Note that the system call, fsgetpath, does

not have any symbol in kernel thus it has been seemingly hooked at all times. [9]

Figure 7. Finding System Call Hooking using Kernel Symbol List

Another method is to use KEXT structure loaded into memory. This structure maintains KEXT name, loaded

virtual address, allocated size and so forth. If System Call and Mach Trap Handler are on normal status, they point to

__kernel__ of KEXT memory space, where KEXT ID is 0. In case of System Call hooking, it is feasible to check

the validation since different area in KEXT would be pointed to. As Figure 8 shows, the system call getdirentries

points to an abnormal position.

Figure 8. System Call Hooking Detection comparing with KEXT Memory Area

3.5. Process Privilege Escalation

Normal process is inherited by the privilege of user or parent process which executes it. The Proc structure in

BSD Components administers UID and GID field of each process. The fields in Proc structure are used only when

storing process information. The cred structure controls a process privilege in practice. As Figure 9 shows, once the

privilege information in cred structure has been changed, the process would be running with altered one.

Rootkit takes advantage of this feature in order to get privilege escalation for a certain process. This means target

process is able to get access to any data with root privilege because of unwanted forgery.

Figure 9. Process Privilege Escalation

To detect the process with escalated privilege by rootkit, the relationships among processes acquired from

memory should be considered. Besides, the UID and GID of proc structure should be compared with those of cred

structure.

If the child process whose parent has user privilege has been running with root one, this might be questionable

process exploited by rootkit. Note that care must be taken to avoid false positive when child process has been

created by parent process which sudo command executed and/or the process with setuid configuration has been

running, because those cases are legitimate privilege escalation.

Rootkit sometimes manipulate merely cred structure to evade the detection of privilege forgery. In other words,

the UID and GID in proc structure remains intact, which rootkit pretends to be a normal process. Therefore it is

detectable to have illegal privilege escalation by UID and GID comparison between the two aforementioned

structures.

3.6. TrustedBSD Framework analysis

Mac OS X supports two types of access control: Discretionary Access Control or DAC and Mandatory Access

Control or MAC. DAC is that each user has one’s own permission for files with Access Control List or ACL. In

Mac OS X, file system stores the ACL of each file and operating system checks the access permission with the ACL.

MAC uses TrustedBSD Framework in BSD Components. [10] The framework provides users with access control

environment based upon security policy. TrustedBSD allows to limit particular process resource (socket or IPC)

and/or a file as well as to get object-level security other than DAC. TrustedBSD renames security policy to MAC

policy. However, it does nothing if not registered in the framework through KEXT. A developer need to develop

KEXT and register a handler to handle operation vector in MAC policy. The framework provides approximately 600

operation vectors in the form of mpo_object_operation_call on Mac OS X Mountain Lion. For instance, if KEXT

registers a handler for mpo_mount_check_mount operation vector then kernel will call a registered handler when

mount system call is called with mount object.

Apple also supports Sandbox to prevent one application from another or system access. [11] Sandbox allows

application to access designated resources based on the description in an application. Presently Sandbox can be only

applied to the applications purchased and downloaded from App-Store. It also uses TrustedBSD Framework for the

purpose of handling application resource access. (Figure 10)

Figure 10. Sandbox Policy

One of Mac OS X reversers has written rootkit based on TrustedBSD Framework. [12] This rootkit is called rex

the wonder dog with KEXT. Once loaded KEXT, new MAC policy is registered. In addition, it registers the handler

for operation vector named mpo_proc_check_get_task so that the process, xyz, could provide the shell with root

privilege when calling task_for_pid(). Figure 11 illustrates the simple diagram of rootkit flow.

Figure 11. rex the wonder dog rootkit flow diagram

Andrew Case, volatility co-developer, has written the module to be able to analyze MAC policy from acquired

memory image, which helps to detect TrustedBSD Framework abuse. [13] Since the framework maintains normal

MAC policy, it should be confirmed with KEXT information together. If any MAC policy has been discovered other

than TMSafetyNet (Safety Net for Time Machine), Quarantine (Quarantine Policy) and Sandbox (Seatbelt Sandbox

Policy), it might be suspicious because those three policies are registered by default from initial Mac OS X

installation process. The KEXT can be found through MAC policy registered by TrustedBSD Framework and virtual

function address configured by operation vector. Keep in mind that KEXT can be used in a legitimate manner such

as anti-virus product.

4. Case Study: rubilyn rootkit Analysis

4.1. Rubilyn rootkit

Rublyn rootkit consists of KEXT and the console to control it, whose source code has been open to the public at

Null Security. Yet no case has been reported to distribute malware with the accessible code. However, chances are

still high to misuse it with diverse variants. This section presents what features this rootkit have and how to check

each one in memory.

The following shows what to perform as main features in rubilyn.

 Hiding a desired file

 Hiding a desired process which has a particular PID

 Manipulating the output of system commands such as kextstat, ps and so forth

 Hiding a network communication for a particular message with a backdoor

In this paper, we acquired the memory image of an infected machine which all rubilyn features were on. Memory

analysis was done by volafox which allows investigators to support all concealment techniques described in Section

3. [14]

4.2. Memory Analysis of an Infected System

Before going into deep memory analysis, we checked basic information of the system with the following

command. Using the options such as system_profiler and uname from volafox, it was available to identify the

infected system information including the kernel version, the size of memory, and the number of possible CPUs and

so on. (Figure 12)

python volafox –i [memory image] –o system_profiler

Figure 12. System Profiler with volafox

It is commonplace to tamper System Call Table and/or Mach Trap Table, therefore the status of these tables

should be examined from the beginning. If volafox detects a suspicious hooking, it displays the message, maybe

hooked. In this case, the following command with grep brought four system call hooks. (Figure 13)

python volafox –i [memory image] –o [systab/mtt] | grep hooked

Figure 13. Hooking Detection with System Call and Mach Trap Table

Note that the output in Figure 13 had system call 427 because no system call information exists in kernel symbol

list as mentioned in Section 3.4. Thus, this does not necessarily mean it was tampered system call by rootkit.

Furthermore, we could anticipate a single module hooking system call because the function pointers of system call

were quite close. The header file indicated three system calls as Figure 14.

Figure 14. The Name of System Call Hooking

Here is common role for each system call hooking.

 getdirentriesattr: This gets file system attributes for multiple directory entries.

 getdirentries64: This gets directory entries in a file system independent format for 64bit inode.

 write_nocancel: All output from Mac OS X system would be seen to user through this system call.

As shown above, system call hooking will do the followings:

 Manipulating the file list provided by system commands such as finder and ls

 Manipulating various outputs provided by system commands with system call hooking

The system call hooking pointers helped to determine hooking modules. The volafox below showed the KEXT list

from dumped memory. (Figure 15)

python volafox –i [memory image] –o kextstat

Figure 15. The Output for KEXT list with volafox

The system command, kextstat, had slightly different KEXT list in live system. (Figure 16)

Figure 16. The Output for KEXT list with System Command, kextstat

Compared the first result with the second, we concluded that there was one more KEXT in acquired memory.

Both console commands should have resulted in the same output because they followed the single linked list of

KEXT structure. The difference certainly came from write_nocancel system call hooking by rootkit. This technique

could merely impact on the output in terminal but not on kernel objects, thereby led to successfully hide a particular

object. In other words, this means simple information extraction from dumped memory could thwart the hooking

technique. Figure 17 presents how to discover a malicious KEXT and dump it from the starting address and the size,

which was the rootkit named com.hackerfantastic.rubilyn. The following command confirmed our hypothesis that a

doubtful rootkit might infect the target system.

python volafox –i [memory image] –o kextstat –x [KID]

Figure 17. A Malicious KEXT Object Discovery and Dumping

Figure 18 illustrates the IDA Pro, one of the most popular reverse engineering tools, helped to identify functions

and system call hooking pointers with ease.

Figure 18. Analysis with IDA Pro

Sometimes rubilyn escalates the privilege for a specific process. The ps option from volafox enabled to recognize

the process list and the details of each process.

python volafox –i [memory image] –o ps

Figure 19. The discovered process which has different privilege of proc and cred structure in process list

The bash process in Figure 19 had different permission of UID (501) and GID (20) in process structure from the

permission of UID (0) and GID (0) in cred structure. Provided that the owner of this process was general user and

sudo command was not in use, it must be escalating the permission of bash process for rootkit by manipulating cred.

Rootkit has a built-in feature to hide information as mentioned earlier. The tasks option from volafox efficiently

revealed a hidden process which tampered proc structure with DKOM technique.

python volafox –i [memory image] –o tasks

Figure 20. Hidden Process Discovery

The output demonstrated that rubilyncon process was concealed from the task list. The option –x [TASKID] from

volafox enabled to extract this process for further malware analysis. The built-in system command, netstat, did not

reveal hidden network session which volafox found in Figure 21.

Figure 21. The Output Comparison between netstat and volafox

5. Conclusion

As the number of Mac OS X exploits has increased, the need of antivirus product for the OS has also boosted.

After Flashback malware which infected around 600,000 Mac OS, Apple has changed their slogan from “Mac

design focus on peace” to “Mac does not infect the PC virus and protect the safety of your data, nothing to do”. The

crisis malware was found at the end of 2012 featured a rootkit for the purpose of concealment as well as user

information leakage. The rubilyn rookit supported a variety of hiding techniques and released to the public with

open source. However, it is true that antivirus for Mac is relatively less effective than that for Windows in that the

former has merely adapted signature-based malware detection technique.

One of the efficient methods to detect rootkits is to make use of memory forensics. This technique includes the

loaded structure analysis on memory and then data extraction in order to check if there is a rootkit on system. For

these reasons, this technique has been widely used to incident response and malware analysis. The memory forensics

for Mac OS X has been studied for a couple of years, and several memory forensic tools support Mac as of now.

This paper proposed how to analyze the system infected by Mac OS X rootkit with memory forensics. It covered

not only memory forensic methodology in Mac but also rootkit feature description and detection techniques.

Furthermore, the case study of rubilyn presented how to apply memory analysis tool for rootkit detection with

efficiency. If this technique could be put into practice for antivirus product, possibly it might cope with high-level

malware attack more effectively.

Acknowledgments

This research was supported by Agency for Defense Development (ADD).

References

[1] New Targeted Attack on Tibetan Activists Using OS X Discovered. The Mac Security

Blog, Intego. Feb. 2013.

[2] rubilyn rootkit – Mac OS X rootkit, http://seclists.org/fulldisclosure/2012/Oct/55.

[3] OS X ABI File Format Reference, Apple Developer. 2009.

[4] volafox: Support New OS!! Mountain Lion xD, n0fate’s Forensic Space.

http://forensic.n0fate.com/2012/08/volafox-support-new-os-mountain-lion-xd.html.

[5] Jonathan Levin, Mac OS X and iOS Internal : To The Apple Core. Wrox. 2012.

[6] Joseph Kong, Designing BSD Rootkits : An Introduction to Kernel Hacking. No Starch

Press. 2007.

[7] I/O Kit Fundamentals, Apple Developer. 2007.

[8] Charlie Miller, Dino Dai Zovi. The Mac Hacker’s Handbook. Wiley. 2007.

[9] volafox: ToDo, Google Code. http://code.google.com/p/volafox/wiki/ToDo.

[10] TrustedBSD Mandatory Access Control (MAC) Framework. TrustedBSD.

http://www.trustedbsd.org/mac.html.

[11] Dionysus Blazakis. The Apple Sandbox. BlackHat DC 2011.

[12] Abusing OS X TrustedBSD Framework to install r00t backdoors.., Reverse

Engineering Mac OS X. http://reverse.put.as/2011/09/18/abusing-os-x-trustedbsd-

framework-to-install-r00t-backdoors/.

[13] Andrew Case, Mac Memory Analysis with Volatility, DFIR Summit. 2012.

[14] volafox project, Google Code. http://code.google.com/p/volafox.

